|
|
|
import os
|
|
import requests
|
|
from PIL import Image
|
|
import torch
|
|
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
|
import gradio as gr
|
|
import openai
|
|
|
|
|
|
model_name = "beingamit99/car_damage_detection"
|
|
processor = AutoImageProcessor.from_pretrained(model_name)
|
|
model = AutoModelForImageClassification.from_pretrained(model_name)
|
|
|
|
|
|
openai_api_key = os.getenv("OpenAI4oMini")
|
|
|
|
client = openai.OpenAI(api_key = openai_api_key)
|
|
|
|
|
|
car_companies = ["Select", "Toyota", "Honda", "Ford", "BMW", "Mercedes", "Audi", "Hyundai", "Kia", "Nissan"]
|
|
car_models = [
|
|
"Select",
|
|
"Corolla", "Camry", "RAV4", "Highlander",
|
|
"Civic", "Accord", "CR-V", "Pilot",
|
|
"Fiesta", "Focus", "Explorer", "Mustang",
|
|
"3 Series", "5 Series", "X3", "X5",
|
|
"C-Class", "E-Class", "GLC", "GLE",
|
|
"A3", "A4", "Q5", "Q7",
|
|
"Elantra", "Sonata", "Tucson", "Santa Fe",
|
|
"Rio", "Optima", "Sportage", "Sorento",
|
|
"Sentra", "Altima", "Rogue", "Murano"
|
|
]
|
|
|
|
years = [str(year) for year in range(2000, 2025)]
|
|
countries = ["Select", "Pakistan", "USA", "UK", "Canada", "Australia", "Germany", "India", "Japan"]
|
|
|
|
|
|
def estimate_repair_cost(damage_type, company, model, year, country):
|
|
prompt = (
|
|
f"Estimate the repair cost for {damage_type} on a {year} {company} {model} in {country}. "
|
|
f"Provide the approximate total cost in local currency with your confidence level, concisely in 2 lines."
|
|
)
|
|
|
|
try:
|
|
response = client.chat.completions.create(
|
|
model="gpt-4o-mini",
|
|
messages=[
|
|
{"role": "system", "content": "You are an expert in car repair cost estimation."},
|
|
{"role": "user", "content": prompt}
|
|
],
|
|
temperature=0.5,
|
|
max_tokens=100
|
|
)
|
|
return response.choices[0].message.content.strip()
|
|
except Exception as e:
|
|
print(f"Error in GPT-4o API call: {e}")
|
|
return f"Error: {e}"
|
|
|
|
|
|
def detect_damage(image):
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
|
confidences, predicted_class = torch.max(probs, dim=-1)
|
|
predicted_label = model.config.id2label[predicted_class.item()]
|
|
return predicted_label, confidences.item()
|
|
|
|
|
|
def process_image(image, company, model, year, country):
|
|
damage_type, confidence = detect_damage(image)
|
|
cost_estimate = estimate_repair_cost(damage_type, company, model, year, country)
|
|
|
|
result = {
|
|
"Major Detected Damage": damage_type,
|
|
"Confidence": f"{confidence * 100:.2f}%",
|
|
"Estimated Repair Cost": cost_estimate
|
|
}
|
|
return result
|
|
|
|
|
|
with gr.Blocks() as interface:
|
|
gr.Markdown("# Car Damage Detection and Cost Estimation")
|
|
gr.Markdown("Upload an image of a damaged car to detect the type of damage and estimate the repair cost.")
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
image_input = gr.Image(type="pil", label="Upload Car Image")
|
|
company_input = gr.Dropdown(choices=car_companies, label="Car Company", value="Select")
|
|
model_input = gr.Dropdown(choices=car_models, label="Car Model", value="Select")
|
|
year_input = gr.Dropdown(choices=years, label="Year of Manufacture", value=years[-1])
|
|
country_input = gr.Dropdown(choices=countries, label="Your Country", value="Select")
|
|
|
|
submit_button = gr.Button("Estimate Repair Cost")
|
|
output = gr.JSON(label="Result")
|
|
|
|
submit_button.click(process_image, inputs=[image_input, company_input, model_input, year_input, country_input], outputs=output)
|
|
|
|
|
|
interface.launch()
|
|
|