Spaces:
Sleeping
Sleeping
# Import necessary libraries | |
import os | |
from PIL import Image | |
import torch | |
from transformers import AutoImageProcessor, AutoModelForImageClassification | |
import gradio as gr | |
import openai | |
# Load the Hugging Face model for car damage detection | |
model_name = "beingamit99/car_damage_detection" | |
processor = AutoImageProcessor.from_pretrained(model_name) | |
model = AutoModelForImageClassification.from_pretrained(model_name) | |
# Set your OpenAI API key | |
openai_api_key = os.getenv("OpenAI4oMini") | |
# Validate API Key | |
if openai_api_key is None: | |
raise ValueError("OpenAI API key is not set. Make sure to set the OpenAI4oMini secret in Hugging Face.") | |
# Initialize OpenAI Client | |
client = openai.OpenAI(api_key=openai_api_key) | |
# Dropdown Options | |
car_companies = ["Select", "Toyota", "Honda", "Ford", "BMW", "Mercedes", "Audi", "Hyundai", "Kia", "Nissan"] | |
car_models = [ | |
"Select", # Default option | |
"Corolla", "Camry", "RAV4", "Highlander", # Toyota | |
"Civic", "Accord", "CR-V", "Pilot", # Honda | |
"Fiesta", "Focus", "Explorer", "Mustang", # Ford | |
"3 Series", "5 Series", "X3", "X5", # BMW | |
"C-Class", "E-Class", "GLC", "GLE", # Mercedes | |
"A3", "A4", "Q5", "Q7", # Audi | |
"Elantra", "Sonata", "Tucson", "Santa Fe", # Hyundai | |
"Rio", "Optima", "Sportage", "Sorento", # Kia | |
"Sentra", "Altima", "Rogue", "Murano" # Nissan | |
] | |
years = [str(year) for year in range(2000, 2025)] | |
countries = ["Select", "Pakistan", "USA", "UK", "Canada", "Australia", "Germany", "India", "Japan"] | |
# Function to Estimate Repair Cost using GPT-4.0 Mini | |
def estimate_repair_cost(damage_type, company, model, year, country): | |
prompt = ( | |
f"Estimate the repair cost for {damage_type} on a {year} {company} {model} in {country}. " | |
f"Provide the approximate total cost in local currency with your confidence level, concisely in 2 lines." | |
) | |
try: | |
# Using client for API call | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{"role": "system", "content": "You are an expert in car repair cost estimation."}, | |
{"role": "user", "content": prompt} | |
], | |
temperature=0.5, | |
max_tokens=100 | |
) | |
# Correctly access the response content | |
return response.choices[0].message.content.strip() | |
except Exception as e: | |
print(f"Error in GPT-4.0 API call: {e}") | |
return f"Error: {e}" | |
# Function to Detect Car Damage from Image using Hugging Face Model | |
def detect_damage(image): | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
confidences, predicted_class = torch.max(probs, dim=-1) | |
predicted_label = model.config.id2label[predicted_class.item()] | |
return predicted_label, confidences.item() | |
# Function to Process Image and Get Results | |
def process_image(image, company, model, year, country): | |
damage_type, confidence = detect_damage(image) | |
cost_estimate = estimate_repair_cost(damage_type, company, model, year, country) | |
result = { | |
"Major Detected Damage": damage_type, | |
"Confidence": f"{confidence * 100:.2f}%", | |
"Estimated Repair Cost": cost_estimate | |
} | |
return result | |
# Gradio Interface | |
with gr.Blocks() as interface: | |
gr.Markdown("# Car Damage Detection and Cost Estimation") | |
gr.Markdown("Upload an image of a damaged car to detect the type of damage and estimate the repair cost.") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="pil", label="Upload Car Image") | |
company_input = gr.Dropdown(choices=car_companies, label="Car Company", value="Select") | |
model_input = gr.Dropdown(choices=car_models, label="Car Model", value="Select") | |
year_input = gr.Dropdown(choices=years, label="Year of Manufacture", value=years[-1]) | |
country_input = gr.Dropdown(choices=countries, label="Your Country", value="Select") | |
submit_button = gr.Button("Estimate Repair Cost") | |
output = gr.JSON(label="Result") | |
submit_button.click(process_image, inputs=[image_input, company_input, model_input, year_input, country_input], outputs=output) | |
# Launch the Gradio Interface | |
interface.launch() | |