Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
# Import necessary libraries
|
2 |
import os
|
3 |
-
import torch
|
4 |
from PIL import Image
|
|
|
5 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
6 |
import gradio as gr
|
7 |
import openai
|
@@ -11,10 +11,15 @@ model_name = "beingamit99/car_damage_detection"
|
|
11 |
processor = AutoImageProcessor.from_pretrained(model_name)
|
12 |
model = AutoModelForImageClassification.from_pretrained(model_name)
|
13 |
|
14 |
-
# Set your OpenAI API key
|
15 |
openai_api_key = os.getenv("OpenAI4oMini")
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Dropdown Options
|
20 |
car_companies = ["Select", "Toyota", "Honda", "Ford", "BMW", "Mercedes", "Audi", "Hyundai", "Kia", "Nissan"]
|
@@ -37,12 +42,13 @@ countries = ["Select", "Pakistan", "USA", "UK", "Canada", "Australia", "Germany"
|
|
37 |
# Function to Estimate Repair Cost using GPT-4.0 Mini
|
38 |
def estimate_repair_cost(damage_type, company, model, year, country):
|
39 |
prompt = (
|
40 |
-
|
41 |
-
|
42 |
-
)
|
43 |
|
44 |
try:
|
45 |
-
|
|
|
46 |
model="gpt-4o-mini",
|
47 |
messages=[
|
48 |
{"role": "system", "content": "You are an expert in car repair cost estimation."},
|
@@ -51,6 +57,7 @@ def estimate_repair_cost(damage_type, company, model, year, country):
|
|
51 |
temperature=0.5,
|
52 |
max_tokens=100
|
53 |
)
|
|
|
54 |
return response['choices'][0]['message']['content'].strip()
|
55 |
except Exception as e:
|
56 |
print(f"Error in GPT-4.0 API call: {e}")
|
@@ -85,11 +92,11 @@ with gr.Blocks() as interface:
|
|
85 |
|
86 |
with gr.Row():
|
87 |
with gr.Column():
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
|
94 |
submit_button = gr.Button("Estimate Repair Cost")
|
95 |
output = gr.JSON(label="Result")
|
|
|
1 |
# Import necessary libraries
|
2 |
import os
|
|
|
3 |
from PIL import Image
|
4 |
+
import torch
|
5 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
6 |
import gradio as gr
|
7 |
import openai
|
|
|
11 |
processor = AutoImageProcessor.from_pretrained(model_name)
|
12 |
model = AutoModelForImageClassification.from_pretrained(model_name)
|
13 |
|
14 |
+
# Set your OpenAI API key
|
15 |
openai_api_key = os.getenv("OpenAI4oMini")
|
16 |
+
|
17 |
+
# Validate API Key
|
18 |
+
if openai_api_key is None:
|
19 |
+
raise ValueError("OpenAI API key is not set. Make sure to set the OpenAI4oMini secret in Hugging Face.")
|
20 |
+
|
21 |
+
# Initialize OpenAI Client
|
22 |
+
client = openai.OpenAI(api_key=openai_api_key)
|
23 |
|
24 |
# Dropdown Options
|
25 |
car_companies = ["Select", "Toyota", "Honda", "Ford", "BMW", "Mercedes", "Audi", "Hyundai", "Kia", "Nissan"]
|
|
|
42 |
# Function to Estimate Repair Cost using GPT-4.0 Mini
|
43 |
def estimate_repair_cost(damage_type, company, model, year, country):
|
44 |
prompt = (
|
45 |
+
f"Estimate the repair cost for {damage_type} on a {year} {company} {model} in {country}. "
|
46 |
+
f"Provide the approximate total cost in local currency with your confidence level, concisely in 2 lines."
|
47 |
+
)
|
48 |
|
49 |
try:
|
50 |
+
# Using client for API call
|
51 |
+
response = client.ChatCompletion.create(
|
52 |
model="gpt-4o-mini",
|
53 |
messages=[
|
54 |
{"role": "system", "content": "You are an expert in car repair cost estimation."},
|
|
|
57 |
temperature=0.5,
|
58 |
max_tokens=100
|
59 |
)
|
60 |
+
# Correctly access the response content
|
61 |
return response['choices'][0]['message']['content'].strip()
|
62 |
except Exception as e:
|
63 |
print(f"Error in GPT-4.0 API call: {e}")
|
|
|
92 |
|
93 |
with gr.Row():
|
94 |
with gr.Column():
|
95 |
+
image_input = gr.Image(type="pil", label="Upload Car Image")
|
96 |
+
company_input = gr.Dropdown(choices=car_companies, label="Car Company", value="Select")
|
97 |
+
model_input = gr.Dropdown(choices=car_models, label="Car Model", value="Select")
|
98 |
+
year_input = gr.Dropdown(choices=years, label="Year of Manufacture", value=years[-1])
|
99 |
+
country_input = gr.Dropdown(choices=countries, label="Your Country", value="Select")
|
100 |
|
101 |
submit_button = gr.Button("Estimate Repair Cost")
|
102 |
output = gr.JSON(label="Result")
|