File size: 5,426 Bytes
3bab37f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1faac5b
3bab37f
 
 
 
 
 
 
1faac5b
3bab37f
 
 
 
 
 
 
 
1faac5b
3bab37f
 
 
 
 
 
 
1faac5b
3bab37f
 
1faac5b
3bab37f
 
1faac5b
3bab37f
 
 
 
1faac5b
 
 
3bab37f
 
1faac5b
3bab37f
 
 
 
1faac5b
 
 
 
3bab37f
1faac5b
 
 
 
 
 
 
3bab37f
1faac5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from typing import List
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool, ScrapeWebsiteTool
from pydantic import BaseModel, Field
import os

# Model options
llm_models = [
    "gemini/gemini-1.5-flash",
    "gemini/gemini-1.5-pro",
    "gemini/gemini-pro"
]
selected_model = llm_models[0]

def set_model(selected_model_name):
    global selected_model
    selected_model = selected_model_name

def configure_api_keys(gemini_api_key):
    if not gemini_api_key:
        raise ValueError("Gemini API key is required")
    os.environ['GEMINI_API_KEY'] = gemini_api_key

# Pydantic models for output validation
class MarketStrategy(BaseModel):
    """Market strategy model"""
    name: str = Field(..., description="Name of the market strategy")
    tatics: List[str] = Field(..., description="List of tactics to be used in the market strategy")
    channels: List[str] = Field(..., description="List of channels to be used in the market strategy")
    KPIs: List[str] = Field(..., description="List of KPIs to be used in the market strategy")

class CampaignIdea(BaseModel):
    """Campaign idea model"""
    name: str = Field(..., description="Name of the campaign idea")
    description: str = Field(..., description="Description of the campaign idea")
    audience: str = Field(..., description="Audience of the campaign idea")
    channel: str = Field(..., description="Channel of the campaign idea")

class Copy(BaseModel):
    """Copy model"""
    title: str = Field(..., description="Title of the copy")
    body: str = Field(..., description="Body of the copy")

@CrewBase
class MarketingPostsCrew:
    """MarketingPosts crew"""
    agents_config = 'config/MarketingPostGeneratorAgent/agents.yaml'
    tasks_config = 'config/MarketingPostGeneratorAgent/tasks.yaml'

    @agent
    def lead_market_analyst(self) -> Agent:
        return Agent(
            config=self.agents_config['lead_market_analyst'],
            tools=[SerperDevTool(), ScrapeWebsiteTool()],
            verbose=True,
            llm=selected_model
        )

    @agent
    def chief_marketing_strategist(self) -> Agent:
        return Agent(
            config=self.agents_config['chief_marketing_strategist'],
            tools=[SerperDevTool(), ScrapeWebsiteTool()],
            verbose=True,
            llm=selected_model
        )

    @agent
    def creative_content_creator(self) -> Agent:
        return Agent(
            config=self.agents_config['creative_content_creator'],
            verbose=True,
            llm=selected_model
        )

    @task
    def research_task(self) -> Task:
        return Task(
            config=self.tasks_config['research_task'],
            agent=self.lead_market_analyst()
        )

    @task
    def project_understanding_task(self) -> Task:
        return Task(
            config=self.tasks_config['project_understanding_task'],
            agent=self.chief_marketing_strategist()
        )

    @task
    def marketing_strategy_task(self) -> Task:
        return Task(
            config=self.tasks_config['marketing_strategy_task'],
            agent=self.chief_marketing_strategist(),
            # output_json=MarketStrategy
        )

    @task
    def campaign_idea_task(self) -> Task:
        return Task(
            config=self.tasks_config['campaign_idea_task'],
            agent=self.creative_content_creator(),
            # output_json=CampaignIdea
        )

    @task
    def copy_creation_task(self) -> Task:
        return Task(
            config=self.tasks_config['copy_creation_task'],
            agent=self.creative_content_creator(),
            context=[self.marketing_strategy_task(), self.campaign_idea_task()],
            output_file="post_generation.md"
        )

    @crew
    def crew(self) -> Crew:
        """Creates the MarketingPosts crew"""
        return Crew(
            agents=self.agents,  # Automatically created by the @agent decorator
            tasks=self.tasks,    # Automatically created by the @task decorator
            process=Process.sequential,
            verbose=True,
            output_log_file=True
        )

def run_crew_mpga(gemini_api_key, customer_domain, project_description):
    """

    Run the MarketingPosts crew using the provided Gemini API key and inputs.



    Args:

        gemini_api_key (str): The Gemini API key.

        customer_domain (str): The customer domain.

        project_description (str): The project description.



    Returns:

        A tuple (result, logs) from the crew kickoff.

    """
    try:
        configure_api_keys(gemini_api_key)
        crew_instance = MarketingPostsCrew().crew()
        inputs = {
            "customer_domain": customer_domain,
            "project_description": project_description
        }
        result = crew_instance.kickoff(inputs=inputs)
        with open("post_generation.md", "r", encoding='utf-8') as f:
            post_generation = f.read()
        with open("logs.txt", 'r', encoding='utf-8') as f:
            logs = f.read()
        with open("logs.txt", 'w', encoding='utf-8') as f:
            f.truncate(0)
        return post_generation, logs
    except Exception as e:
        return f"Error: {str(e)}", ""