from typing import List from crewai import Agent, Crew, Process, Task from crewai.project import CrewBase, agent, crew, task from crewai_tools import SerperDevTool, ScrapeWebsiteTool from pydantic import BaseModel, Field import os # Model options llm_models = [ "gemini/gemini-1.5-flash", "gemini/gemini-1.5-pro", "gemini/gemini-pro" ] selected_model = llm_models[0] def set_model(selected_model_name): global selected_model selected_model = selected_model_name def configure_api_keys(gemini_api_key): if not gemini_api_key: raise ValueError("Gemini API key is required") os.environ['GEMINI_API_KEY'] = gemini_api_key # Pydantic models for output validation class MarketStrategy(BaseModel): """Market strategy model""" name: str = Field(..., description="Name of the market strategy") tatics: List[str] = Field(..., description="List of tactics to be used in the market strategy") channels: List[str] = Field(..., description="List of channels to be used in the market strategy") KPIs: List[str] = Field(..., description="List of KPIs to be used in the market strategy") class CampaignIdea(BaseModel): """Campaign idea model""" name: str = Field(..., description="Name of the campaign idea") description: str = Field(..., description="Description of the campaign idea") audience: str = Field(..., description="Audience of the campaign idea") channel: str = Field(..., description="Channel of the campaign idea") class Copy(BaseModel): """Copy model""" title: str = Field(..., description="Title of the copy") body: str = Field(..., description="Body of the copy") @CrewBase class MarketingPostsCrew: """MarketingPosts crew""" agents_config = 'config/MarketingPostGeneratorAgent/agents.yaml' tasks_config = 'config/MarketingPostGeneratorAgent/tasks.yaml' @agent def lead_market_analyst(self) -> Agent: return Agent( config=self.agents_config['lead_market_analyst'], tools=[SerperDevTool(), ScrapeWebsiteTool()], verbose=True, llm=selected_model ) @agent def chief_marketing_strategist(self) -> Agent: return Agent( config=self.agents_config['chief_marketing_strategist'], tools=[SerperDevTool(), ScrapeWebsiteTool()], verbose=True, llm=selected_model ) @agent def creative_content_creator(self) -> Agent: return Agent( config=self.agents_config['creative_content_creator'], verbose=True, llm=selected_model ) @task def research_task(self) -> Task: return Task( config=self.tasks_config['research_task'], agent=self.lead_market_analyst() ) @task def project_understanding_task(self) -> Task: return Task( config=self.tasks_config['project_understanding_task'], agent=self.chief_marketing_strategist() ) @task def marketing_strategy_task(self) -> Task: return Task( config=self.tasks_config['marketing_strategy_task'], agent=self.chief_marketing_strategist(), # output_json=MarketStrategy ) @task def campaign_idea_task(self) -> Task: return Task( config=self.tasks_config['campaign_idea_task'], agent=self.creative_content_creator(), # output_json=CampaignIdea ) @task def copy_creation_task(self) -> Task: return Task( config=self.tasks_config['copy_creation_task'], agent=self.creative_content_creator(), context=[self.marketing_strategy_task(), self.campaign_idea_task()], output_file="post_generation.md" ) @crew def crew(self) -> Crew: """Creates the MarketingPosts crew""" return Crew( agents=self.agents, # Automatically created by the @agent decorator tasks=self.tasks, # Automatically created by the @task decorator process=Process.sequential, verbose=True, output_log_file=True ) def run_crew_mpga(gemini_api_key, customer_domain, project_description): """ Run the MarketingPosts crew using the provided Gemini API key and inputs. Args: gemini_api_key (str): The Gemini API key. customer_domain (str): The customer domain. project_description (str): The project description. Returns: A tuple (result, logs) from the crew kickoff. """ try: configure_api_keys(gemini_api_key) crew_instance = MarketingPostsCrew().crew() inputs = { "customer_domain": customer_domain, "project_description": project_description } result = crew_instance.kickoff(inputs=inputs) with open("post_generation.md", "r", encoding='utf-8') as f: post_generation = f.read() with open("logs.txt", 'r', encoding='utf-8') as f: logs = f.read() with open("logs.txt", 'w', encoding='utf-8') as f: f.truncate(0) return post_generation, logs except Exception as e: return f"Error: {str(e)}", ""