File size: 12,379 Bytes
22faf28
 
 
 
 
1699fe3
 
 
22faf28
0c8ac02
 
 
 
bd3018c
e1b961b
0c8ac02
 
 
 
 
 
 
1699fe3
 
0c8ac02
 
1699fe3
0c8ac02
 
 
 
1699fe3
 
 
 
 
0c8ac02
 
 
 
 
1699fe3
 
e1b961b
1699fe3
 
e1b961b
22faf28
bd3018c
9cf3e12
1699fe3
 
bd3018c
 
 
 
1699fe3
 
 
 
 
9cf3e12
1699fe3
 
 
 
 
0c8ac02
bd3018c
 
0c8ac02
bd3018c
0c8ac02
 
 
 
 
 
 
1699fe3
bd3018c
1699fe3
9cf3e12
bd3018c
 
 
0c8ac02
bd3018c
 
 
 
 
 
 
 
0c8ac02
9cf3e12
0c8ac02
 
9cf3e12
0c8ac02
bd3018c
9cf3e12
bd3018c
 
 
 
 
 
 
 
0c8ac02
bd3018c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cf3e12
bd3018c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c8ac02
 
 
 
 
 
 
 
 
 
 
 
 
44b5ef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22faf28
44b5ef3
22faf28
44b5ef3
22faf28
0c8ac02
22faf28
44b5ef3
 
 
 
 
 
0c8ac02
1699fe3
0c8ac02
 
 
 
 
 
 
 
 
1699fe3
0c8ac02
1699fe3
 
0c8ac02
44b5ef3
 
0c8ac02
 
 
 
 
 
 
 
 
 
 
22faf28
 
1699fe3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from huggingface_hub import InferenceClient
import gradio as gr
import base64
import datetime

Master1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
Master2 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
dictionary = InferenceClient("tiiuae/falcon-7b-instruct")

# Global variables for debate settings
topic = None
position = None
turn = None
history = []  # Global history to track the conversation

# Function to start the single-player debate
def start(txt, dd):
    global topic, position
    topic, position = txt, dd
    return f"Debate Master is ready to start the debate on '{topic}' as a '{position}' debater. You can now enter your response."


# Dictionary definition/clarification feature
def explain_word(message, history: list[tuple[str, str]],max_tokens=128, temperature=0.4, top_p=0.95):
    system_message = {
        "role": "system",
        "content": "You are a helpful assistant providing concise definitions and explanations for words or phrases."
    }
    messages = [system_message]

    # Adding conversation history
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    # Adding the current user input
    messages.append({"role": "user", "content": message})

    response = ""
    for message_chunk in dictionary.chat_completion(
            messages, max_tokens=64, stream=True, temperature=0.3, top_p=0.9):
        response += message_chunk.choices[0].delta.content
        yield response
    print(f"{datetime.datetime.now()}::{messages[-1]['content']}->{response}\n")


# Function for generating debate responses
def generate_response(llm, position, who, topic, message):
    system_message = {
        "role": "system",
        "content": f"You are a debate participant tasked with defending the position '{position}' on the topic '{topic}'. Your goal is to articulate your arguments with clarity, logic, and professionalism while addressing counterpoints made by the opposing side. "
                   f"Ensure that your responses are thoughtful, evidence-based, and persuasive. Strictly keep them concise—aim for responses that are 4 to 5 lines in a single paragraph. "
                   f"During the debate, if the user presents arguments challenging your stance, analyze their points critically and provide respectful but firm counterarguments. "
                   f"Stay consistent with your assigned position ('{position}') and maintain a respectful, formal tone throughout."
    }

    messages = [system_message]
    messages.append({"role": "user", "content": message})

    response = f"{who}:\n"
    for message_chunk in llm.chat_completion(
            messages, max_tokens=128, stream=True, temperature=0.4, top_p=0.95):
        response += message_chunk.choices[0].delta.content

    return response


# Function to start the Master vs Master debate
def start_debate(topic, position_1, position_2):
    global turn, history
    if not topic or not position_1 or not position_2:
        return "Please provide the debate topic and positions for both participants.", []

    # Ensure positions are opposite
    if position_1 == position_2:
        return "The positions of both participants must be opposite. Please adjust them.", []

    turn = "Master-1"
    history = []  # Reset history
    initial_message = "Opening Statement"
    response = generate_response(Master1, position_1, 'Master-1', topic, initial_message)
    history.append((initial_message, response))
    return f"The debate has started! {turn} begins.", history


# Function for alternating turns in Master vs Master debate
def next_turn(topic, position_1, position_2, current_history):
    global turn, history
    if not current_history:
        return "No ongoing debate. Please start a debate first.", []

    # Alternate turn logic
    if turn == "Master-1":
        turn = "Master-2"
        llm, position, who = Master2, position_2, 'Master-2'
    else:
        turn = "Master-1"
        llm, position, who = Master1, position_1, "Master-1"

    last_response = current_history[-1][1]  # Get the last message
    response = generate_response(llm, position, who, topic, last_response)
    history.append(("", response))  # Add the response to history
    return f"It's now {turn}'s turn.", history

# Debate response function
def debate_respond(message, history: list[tuple[str, str]],
                   max_tokens=128, temperature=0.4, top_p=0.95):
    if position == None and topic == None:
        return f"Please fill the Debate Topic -> choose Debate Master stance -> click START"

    # System message defining assistant behavior in a debate
    system_message = {
        "role": "system",
        "content": f"You are a debate participant tasked with defending the position '{position}' on the topic '{topic}'. Your goal is to articulate your arguments with clarity, logic, and professionalism while addressing counterpoints made by the opposing side."
                   f"Ensure that your responses are thoughtful, evidence-based, and persuasive, strictly keep them concise—aim for responses that are 4 to 5 lines in a single paragraph."
                   f"During the debate, if the user presents arguments challenging your stance, analyze their points critically and provide respectful but firm counterarguments. Avoid dismissive language and focus on strengthening your case through logical reasoning, data, and examples relevant to the topic."
                   f"Stay consistent with your assigned position ('{position}'), even if the opposing arguments are strong. Your role is not to concede but to present a compelling case for your stance. Keep the tone respectful and formal throughout the discussion, fostering a constructive and engaging debate environment."
    }

    messages = [system_message]

    # Adding conversation history
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    # Adding the current user input
    messages.append({"role": "user", "content": message})

    # Generating the response
    response = ""
    for message in Master1.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
    ):
        response += message.choices[0].delta.content
    yield  response
    print(f"{datetime.datetime.now()}::{messages[-1]['content']}->{response}\n")

# Enhanced dictionary explanation function
def explain_word(message, history: list[tuple[str, str]], max_tokens=128, temperature=0.4, top_p=0.95):
    system_message = {
        "role": "system",
        "content": "You are a professional English teacher with expertise in vocabulary, grammar, and etymology. "
                   "When asked about a word or phrase, provide a clear and concise definition, its part of speech, examples of its use in sentences, synonyms, and any relevant etymological details. "
                   "If the word has multiple meanings, explain them with clarity. Your goal is to enhance understanding and provide a comprehensive explanation in a conversational tone."
    }
    messages = [system_message]

    # Adding conversation history
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    # Adding the current user input
    messages.append({"role": "user", "content": message})

    response = ""
    for message_chunk in dictionary.chat_completion(
            messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
        response += message_chunk.choices[0].delta.content
    return response

# Encode image function for logos (optional, kept for design)
def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')


# Encode the images
github_logo_encoded = encode_image("Images/github-logo.png")
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png")
website_logo_encoded = encode_image("Images/ai-logo.png")


footer = """
<div style="background-color: #1d2938; color: white; padding: 10px; width: 100%; bottom: 0; left: 0; display: flex; justify-content: space-between; align-items: center; padding: .2rem 35px; box-sizing: border-box; font-size: 16px;">
    <div style="text-align: left;">
        <p style="margin: 0;">&copy; 2024 </p>
    </div>
    <div style="text-align: center; flex-grow: 1;">
        <p style="margin: 0;">      This website is made with ❤ by SARATH CHANDRA</p>
    </div>
    <div class="social-links" style="display: flex; gap: 20px; justify-content: flex-end; align-items: center;">
        <a href="https://github.com/21bq1a4210" target="_blank" style="text-align: center;">
            <img src="data:image/png;base64,{}" alt="GitHub" width="40" height="40" style="display: block; margin: 0 auto;">
            <span style="font-size: 14px;">GitHub</span>
        </a>
        <a href="https://www.linkedin.com/in/sarath-chandra-bandreddi-07393b1aa/" target="_blank" style="text-align: center;">
            <img src="data:image/png;base64,{}" alt="LinkedIn" width="40" height="40" style="display: block; margin: 0 auto;">
            <span style="font-size: 14px;">LinkedIn</span>
        </a>
        <a href="https://21bq1a4210.github.io/MyPortfolio-/" target="_blank" style="text-align: center;">
            <img src="data:image/png;base64,{}" alt="Portfolio" width="40" height="40" style="display: block; margin-right: 40px;">
            <span style="font-size: 14px;">Portfolio</span>
        </a>
    </div>
</div>
"""

# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]),
               css='footer {visibility: hidden}') as demo:
    gr.Markdown("# Welcome to The Debate Master 🗣️🤖")
    with gr.Tabs():
        with gr.TabItem("Master Vs You"):
            with gr.Row():
                with gr.Column(scale=1):
                    topic = gr.Textbox(label="STEP-1: Debate Topic", placeholder="Enter the topic of the debate")
                    position = gr.Radio(["For", "Against"], label="STEP-2: Debate Master stance", scale=1)
                    btn = gr.Button("STEP-3: Start", variant='primary')
                    clr = gr.ClearButton()
                    output = gr.Textbox(label='Status')
                with gr.Column(scale=4):
                    debate_interface = gr.ChatInterface(debate_respond, chatbot=gr.Chatbot(height=475, label="Debate Arena"))
        with gr.TabItem("Master Vs Master"):
            with gr.Row():
                with gr.Column(scale=1):
                    topic_input = gr.Textbox(label="STEP-1: Debate Topic", placeholder="Enter the topic of the debate")
                    position_1_input = gr.Radio(["For", "Against"], label="STEP-2: Master-1 Stance")
                    position_2_input = gr.Radio(["For", "Against"], label="STEP-3: Master-2 Stance")
                    start_button = gr.Button("STEP-4: Start", variant='primary')
                    next_button = gr.Button("Next Turn")
                    status_output = gr.Textbox(label="Status", interactive=False)
                with gr.Column(scale=2):
                    chatbot = gr.Chatbot(label="Debate Arena", height=500)
                with gr.Column(scale=1):
                    dictionary_search_interface = gr.ChatInterface(explain_word, chatbot=gr.Chatbot(height=450, label="Define word"))

    gr.HTML(footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
    btn.click(fn=start, inputs=[topic, position], outputs=output)
    start_button.click(
        fn=start_debate,
        inputs=[topic_input, position_1_input, position_2_input],
        outputs=[status_output, chatbot],
    )
    next_button.click(
        fn=next_turn,
        inputs=[topic_input, position_1_input, position_2_input, chatbot],
        outputs=[status_output, chatbot],
    )
    clr.click(lambda: [None], outputs=[output])

if __name__ == "__main__":
    demo.launch(share=True)