Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
import gradio as gr
|
|
|
9 |
import base64
|
10 |
|
11 |
# Load environment variables
|
@@ -16,6 +17,32 @@ llm_models = [
|
|
16 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
17 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
18 |
"tiiuae/falcon-7b-instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
]
|
20 |
|
21 |
embed_models = [
|
@@ -32,7 +59,6 @@ vector_index = None
|
|
32 |
|
33 |
# Initialize the parser
|
34 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
35 |
-
|
36 |
# Define file extractor with various common extensions
|
37 |
file_extractor = {
|
38 |
'.pdf': parser, # PDF documents
|
@@ -40,105 +66,62 @@ file_extractor = {
|
|
40 |
'.doc': parser, # Older Microsoft Word documents
|
41 |
'.txt': parser, # Plain text files
|
42 |
'.csv': parser, # Comma-separated values files
|
43 |
-
'.xlsx': parser, # Microsoft Excel files
|
44 |
-
'.pptx': parser, # Microsoft PowerPoint files
|
45 |
-
'.html': parser, # HTML files
|
|
|
|
|
|
|
|
|
|
|
46 |
'.jpg': parser, # JPEG images
|
47 |
'.jpeg': parser, # JPEG images
|
48 |
'.png': parser, # PNG images
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
'.webp': parser, # WebP images
|
50 |
-
'.svg': parser, # SVG files
|
51 |
}
|
52 |
|
53 |
-
# Markdown content definitions
|
54 |
-
description = """
|
55 |
-
## Welcome to DocBot 📄🤖
|
56 |
-
DocBot is an intelligent document analysis tool that can help you extract insights from various document formats including:
|
57 |
-
- PDF documents
|
58 |
-
- Word documents (.docx, .doc)
|
59 |
-
- Text files
|
60 |
-
- CSV files
|
61 |
-
- Excel files
|
62 |
-
- PowerPoint presentations
|
63 |
-
- HTML files
|
64 |
-
- Images with text (JPG, PNG, WebP, SVG)
|
65 |
-
Simply upload your document, select your preferred embedding model and LLM, then start asking questions!
|
66 |
-
"""
|
67 |
-
|
68 |
-
guide = """
|
69 |
-
### How to Use DocBot:
|
70 |
-
1. **Upload Document**: Choose any supported file format
|
71 |
-
2. **Select Embedding Model**: Choose from available embedding models (BAAI/bge-small-en-v1.5 is recommended for most cases)
|
72 |
-
3. **Submit**: Click submit to process your document
|
73 |
-
4. **Select LLM**: Choose your preferred language model
|
74 |
-
5. **Ask Questions**: Start chatting with your document!
|
75 |
-
### Tips:
|
76 |
-
- Smaller embedding models (like bge-small-en-v1.5) are faster but may be less accurate
|
77 |
-
- Larger models provide better understanding but take more time
|
78 |
-
- Be specific in your questions for better results
|
79 |
-
"""
|
80 |
-
|
81 |
-
footer = """
|
82 |
-
<div style="text-align: center; margin-top: 20px; padding: 20px; border-top: 1px solid #ddd;">
|
83 |
-
<p>Built with ❤️ using LlamaIndex and Gradio</p>
|
84 |
-
<div style="display: flex; justify-content: center; gap: 20px; margin-top: 10px;">
|
85 |
-
<a href="https://github.com" target="_blank">
|
86 |
-
<img src="data:image/png;base64,{0}" alt="GitHub" style="width: 24px; height: 24px;">
|
87 |
-
</a>
|
88 |
-
<a href="https://linkedin.com" target="_blank">
|
89 |
-
<img src="data:image/png;base64,{1}" alt="LinkedIn" style="width: 24px; height: 24px;">
|
90 |
-
</a>
|
91 |
-
<a href="https://your-website.com" target="_blank">
|
92 |
-
<img src="data:image/png;base64,{2}" alt="Website" style="width: 24px; height: 24px;">
|
93 |
-
</a>
|
94 |
-
</div>
|
95 |
-
</div>
|
96 |
-
"""
|
97 |
|
98 |
# File processing function
|
99 |
def load_files(file_path: str, embed_model_name: str):
|
100 |
try:
|
101 |
-
if not file_path:
|
102 |
-
return "Please select a file first."
|
103 |
-
|
104 |
-
if not embed_model_name:
|
105 |
-
return "Please select an embedding model."
|
106 |
-
|
107 |
global vector_index
|
108 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
109 |
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
110 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
111 |
print(f"Parsing done for {file_path}")
|
112 |
filename = os.path.basename(file_path)
|
113 |
-
return f"
|
114 |
except Exception as e:
|
115 |
-
return f"
|
|
|
116 |
|
117 |
# Function to handle the selected model from dropdown
|
118 |
def set_llm_model(selected_model):
|
119 |
global selected_llm_model_name
|
120 |
-
|
121 |
-
|
122 |
-
return f"
|
|
|
123 |
|
124 |
# Respond function that uses the globally set selected model
|
125 |
def respond(message, history):
|
126 |
try:
|
127 |
-
if not vector_index:
|
128 |
-
return "Please upload and process a document first."
|
129 |
-
|
130 |
-
if not message.strip():
|
131 |
-
return "Please enter a question."
|
132 |
-
|
133 |
# Initialize the LLM with the selected model
|
134 |
llm = HuggingFaceInferenceAPI(
|
135 |
model_name=selected_llm_model_name,
|
136 |
-
contextWindow=8192,
|
137 |
-
maxTokens=1024,
|
138 |
-
temperature=0.3,
|
139 |
-
topP=0.9,
|
140 |
-
frequencyPenalty=0.5,
|
141 |
-
presencePenalty=0.5,
|
142 |
token=os.getenv("TOKEN")
|
143 |
)
|
144 |
|
@@ -147,163 +130,56 @@ def respond(message, history):
|
|
147 |
bot_message = query_engine.query(message)
|
148 |
|
149 |
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
|
150 |
-
return f"
|
151 |
except Exception as e:
|
152 |
-
|
|
|
|
|
153 |
|
154 |
-
def
|
155 |
-
|
156 |
-
|
157 |
-
if os.path.exists(image_path):
|
158 |
-
with open(image_path, "rb") as image_file:
|
159 |
-
return base64.b64encode(image_file.read()).decode('utf-8')
|
160 |
-
except Exception:
|
161 |
-
pass
|
162 |
-
return ""
|
163 |
-
|
164 |
-
# Clear function for file processing components
|
165 |
-
def clear_file_components():
|
166 |
-
return None, embed_models[0], ""
|
167 |
|
168 |
-
# Encode the images
|
169 |
-
github_logo_encoded =
|
170 |
-
linkedin_logo_encoded =
|
171 |
-
website_logo_encoded =
|
172 |
|
173 |
# UI Setup
|
174 |
-
with gr.Blocks(
|
175 |
-
|
176 |
-
css='footer {visibility: hidden}',
|
177 |
-
title="DocBot - Document Analysis Assistant"
|
178 |
-
) as demo:
|
179 |
-
|
180 |
-
gr.Markdown("# DocBot 📄🤖")
|
181 |
-
gr.Markdown("*Intelligent Document Analysis Assistant*")
|
182 |
-
|
183 |
with gr.Tabs():
|
184 |
-
with gr.TabItem("
|
185 |
-
gr.Markdown(description)
|
186 |
|
187 |
-
with gr.TabItem("
|
188 |
-
with gr.Accordion("
|
189 |
-
gr.Markdown(guide)
|
190 |
-
|
191 |
with gr.Row():
|
192 |
with gr.Column(scale=1):
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
file_count="single",
|
197 |
-
type='filepath',
|
198 |
-
label="Step 1: Upload Document",
|
199 |
-
file_types=['.pdf', '.docx', '.doc', '.txt', '.csv', '.xlsx', '.pptx', '.html', '.jpg', '.jpeg', '.png', '.webp', '.svg']
|
200 |
-
)
|
201 |
-
|
202 |
-
embed_model_dropdown = gr.Dropdown(
|
203 |
-
choices=embed_models,
|
204 |
-
label="Step 2: Select Embedding Model",
|
205 |
-
interactive=True,
|
206 |
-
value=embed_models[0]
|
207 |
-
)
|
208 |
-
|
209 |
-
with gr.Row():
|
210 |
-
btn = gr.Button("🚀 Process Document", variant='primary', size="lg")
|
211 |
-
clear_btn = gr.Button("🗑️ Clear", size="lg")
|
212 |
-
|
213 |
-
output = gr.Textbox(
|
214 |
-
label='Processing Status',
|
215 |
-
interactive=False,
|
216 |
-
placeholder="Upload a document and click 'Process Document' to begin..."
|
217 |
-
)
|
218 |
-
|
219 |
-
with gr.Group():
|
220 |
-
gr.Markdown("### Model Selection")
|
221 |
-
llm_model_dropdown = gr.Dropdown(
|
222 |
-
choices=llm_models,
|
223 |
-
label="Step 3: Select Language Model",
|
224 |
-
interactive=True,
|
225 |
-
value=llm_models[0]
|
226 |
-
)
|
227 |
-
llm_status = gr.Textbox(
|
228 |
-
label="Selected Model",
|
229 |
-
interactive=False,
|
230 |
-
value=f"LLM set to: {llm_models[0]}"
|
231 |
-
)
|
232 |
-
|
233 |
-
with gr.Column(scale=2):
|
234 |
-
gr.Markdown("### Chat with Your Document")
|
235 |
-
chatbot = gr.Chatbot(
|
236 |
-
height=600,
|
237 |
-
placeholder="Process a document first, then start asking questions!",
|
238 |
-
show_label=False
|
239 |
-
)
|
240 |
-
|
241 |
-
msg = gr.Textbox(
|
242 |
-
placeholder="Step 4: Ask questions about your document...",
|
243 |
-
container=False,
|
244 |
-
scale=7
|
245 |
-
)
|
246 |
-
|
247 |
with gr.Row():
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
# Event bindings
|
268 |
-
llm_model_dropdown.change(
|
269 |
-
fn=set_llm_model,
|
270 |
-
inputs=[llm_model_dropdown],
|
271 |
-
outputs=[llm_status]
|
272 |
-
)
|
273 |
-
|
274 |
-
btn.click(
|
275 |
-
fn=load_files,
|
276 |
-
inputs=[file_input, embed_model_dropdown],
|
277 |
-
outputs=[output]
|
278 |
-
)
|
279 |
-
|
280 |
-
submit_btn.click(
|
281 |
-
fn=chat_respond,
|
282 |
-
inputs=[msg, chatbot],
|
283 |
-
outputs=[chatbot, msg]
|
284 |
-
)
|
285 |
-
|
286 |
-
msg.submit(
|
287 |
-
fn=chat_respond,
|
288 |
-
inputs=[msg, chatbot],
|
289 |
-
outputs=[chatbot, msg]
|
290 |
-
)
|
291 |
-
|
292 |
-
clear_btn.click(
|
293 |
-
fn=clear_file_components,
|
294 |
-
outputs=[file_input, embed_model_dropdown, output]
|
295 |
-
)
|
296 |
-
|
297 |
-
clear_chat_btn.click(
|
298 |
-
fn=clear_chat,
|
299 |
-
outputs=[chatbot, msg]
|
300 |
-
)
|
301 |
|
302 |
-
# Launch the demo
|
303 |
if __name__ == "__main__":
|
304 |
-
demo.launch(
|
305 |
-
share=True,
|
306 |
-
server_name="0.0.0.0",
|
307 |
-
server_port=7860,
|
308 |
-
show_error=True
|
309 |
-
)
|
|
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
import gradio as gr
|
9 |
+
import markdowm as md
|
10 |
import base64
|
11 |
|
12 |
# Load environment variables
|
|
|
17 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
18 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
19 |
"tiiuae/falcon-7b-instruct",
|
20 |
+
# "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
21 |
+
# "deepseek-ai/deepseek-vl2", ## 54GB > 10GB
|
22 |
+
# "deepseek-ai/deepseek-vl2-small", ## 32GB > 10GB
|
23 |
+
# "deepseek-ai/deepseek-vl2-tiny", ## high response time
|
24 |
+
# "deepseek-ai/deepseek-llm-7b-chat", ## 13GB > 10GB
|
25 |
+
# "deepseek-ai/deepseek-math-7b-instruct", ## 13GB > 10GB
|
26 |
+
# "deepseek-ai/deepseek-coder-33b-instruct", ## 66GB > 10GB
|
27 |
+
# "deepseek-ai/DeepSeek-R1-Zero", ## 688GB > 10GB
|
28 |
+
# "mistralai/Mixtral-8x22B-Instruct-v0.1", ## 281GB>10GB
|
29 |
+
# "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
|
30 |
+
# "impira/layoutlm-document-qa", ## ERR
|
31 |
+
# "Qwen/Qwen1.5-7B", ## 15GB
|
32 |
+
# "Qwen/Qwen2.5-3B", ## high response time
|
33 |
+
# "google/gemma-2-2b-jpn-it", ## high response time
|
34 |
+
# "impira/layoutlm-invoices", ## bad req
|
35 |
+
# "google/pix2struct-docvqa-large", ## bad req
|
36 |
+
# "google/gemma-7b-it", ## 17GB > 10GB
|
37 |
+
# "google/gemma-2b-it", ## high response time
|
38 |
+
# "HuggingFaceH4/zephyr-7b-beta", ## high response time
|
39 |
+
# "HuggingFaceH4/zephyr-7b-gemma-v0.1", ## bad req
|
40 |
+
# "microsoft/phi-2", ## high response time
|
41 |
+
# "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
|
42 |
+
# "mosaicml/mpt-7b-instruct", ## 13GB>10GB
|
43 |
+
# "google/flan-t5-xxl" ## high respons time
|
44 |
+
# "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
|
45 |
+
# "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
|
46 |
]
|
47 |
|
48 |
embed_models = [
|
|
|
59 |
|
60 |
# Initialize the parser
|
61 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
|
|
62 |
# Define file extractor with various common extensions
|
63 |
file_extractor = {
|
64 |
'.pdf': parser, # PDF documents
|
|
|
66 |
'.doc': parser, # Older Microsoft Word documents
|
67 |
'.txt': parser, # Plain text files
|
68 |
'.csv': parser, # Comma-separated values files
|
69 |
+
'.xlsx': parser, # Microsoft Excel files (requires additional processing for tables)
|
70 |
+
'.pptx': parser, # Microsoft PowerPoint files (for slides)
|
71 |
+
'.html': parser, # HTML files (web pages)
|
72 |
+
# '.rtf': parser, # Rich Text Format files
|
73 |
+
# '.odt': parser, # OpenDocument Text files
|
74 |
+
# '.epub': parser, # ePub files (e-books)
|
75 |
+
|
76 |
+
# Image files for OCR processing
|
77 |
'.jpg': parser, # JPEG images
|
78 |
'.jpeg': parser, # JPEG images
|
79 |
'.png': parser, # PNG images
|
80 |
+
# '.bmp': parser, # Bitmap images
|
81 |
+
# '.tiff': parser, # TIFF images
|
82 |
+
# '.tif': parser, # TIFF images (alternative extension)
|
83 |
+
# '.gif': parser, # GIF images (can contain text)
|
84 |
+
|
85 |
+
# Scanned documents in image formats
|
86 |
'.webp': parser, # WebP images
|
87 |
+
'.svg': parser, # SVG files (vector format, may contain embedded text)
|
88 |
}
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# File processing function
|
92 |
def load_files(file_path: str, embed_model_name: str):
|
93 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
global vector_index
|
95 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
96 |
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
97 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
98 |
print(f"Parsing done for {file_path}")
|
99 |
filename = os.path.basename(file_path)
|
100 |
+
return f"Ready to give response on {filename}"
|
101 |
except Exception as e:
|
102 |
+
return f"An error occurred: {e}"
|
103 |
+
|
104 |
|
105 |
# Function to handle the selected model from dropdown
|
106 |
def set_llm_model(selected_model):
|
107 |
global selected_llm_model_name
|
108 |
+
selected_llm_model_name = selected_model # Update the global variable
|
109 |
+
# print(f"Model selected: {selected_model_name}")
|
110 |
+
# return f"Model set to: {selected_model_name}"
|
111 |
+
|
112 |
|
113 |
# Respond function that uses the globally set selected model
|
114 |
def respond(message, history):
|
115 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
# Initialize the LLM with the selected model
|
117 |
llm = HuggingFaceInferenceAPI(
|
118 |
model_name=selected_llm_model_name,
|
119 |
+
contextWindow=8192, # Context window size (typically max length of the model)
|
120 |
+
maxTokens=1024, # Tokens per response generation (512-1024 works well for detailed answers)
|
121 |
+
temperature=0.3, # Lower temperature for more focused answers (0.2-0.4 for factual info)
|
122 |
+
topP=0.9, # Top-p sampling to control diversity while retaining quality
|
123 |
+
frequencyPenalty=0.5, # Slight penalty to avoid repetition
|
124 |
+
presencePenalty=0.5, # Encourages exploration without digressing too much
|
125 |
token=os.getenv("TOKEN")
|
126 |
)
|
127 |
|
|
|
130 |
bot_message = query_engine.query(message)
|
131 |
|
132 |
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
|
133 |
+
return f"{selected_llm_model_name}:\n{str(bot_message)}"
|
134 |
except Exception as e:
|
135 |
+
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
|
136 |
+
return "Please upload a file."
|
137 |
+
return f"An error occurred: {e}"
|
138 |
|
139 |
+
def encode_image(image_path):
|
140 |
+
with open(image_path, "rb") as image_file:
|
141 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
# Encode the images
|
144 |
+
github_logo_encoded = encode_image("Images/github-logo.png")
|
145 |
+
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png")
|
146 |
+
website_logo_encoded = encode_image("Images/ai-logo.png")
|
147 |
|
148 |
# UI Setup
|
149 |
+
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo:
|
150 |
+
gr.Markdown("# DocBot📄🤖")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
with gr.Tabs():
|
152 |
+
with gr.TabItem("Intro"):
|
153 |
+
gr.Markdown(md.description)
|
154 |
|
155 |
+
with gr.TabItem("DocBot"):
|
156 |
+
with gr.Accordion("=== IMPORTANT: READ ME FIRST ===", open=False):
|
157 |
+
guid = gr.Markdown(md.guide)
|
|
|
158 |
with gr.Row():
|
159 |
with gr.Column(scale=1):
|
160 |
+
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
|
161 |
+
# gr.Markdown("Dont know what to select check out in Intro tab")
|
162 |
+
embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
with gr.Row():
|
164 |
+
btn = gr.Button("Submit", variant='primary')
|
165 |
+
clear = gr.ClearButton()
|
166 |
+
output = gr.Text(label='Vector Index')
|
167 |
+
llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True)
|
168 |
+
with gr.Column(scale=3):
|
169 |
+
gr.ChatInterface(
|
170 |
+
fn=respond,
|
171 |
+
chatbot=gr.Chatbot(height=500),
|
172 |
+
theme = "soft",
|
173 |
+
show_progress='full',
|
174 |
+
# cache_mode='lazy',
|
175 |
+
textbox=gr.Textbox(placeholder="Step-4: Ask me questions on the uploaded document!", container=False)
|
176 |
+
)
|
177 |
+
gr.HTML(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
|
178 |
+
# Set up Gradio interactions
|
179 |
+
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown)
|
180 |
+
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output)
|
181 |
+
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
+
# Launch the demo with a public link option
|
184 |
if __name__ == "__main__":
|
185 |
+
demo.launch(share=True) # Correct
|
|
|
|
|
|
|
|
|
|