Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,132 +6,73 @@ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
import gradio as gr
|
9 |
-
import markdowm as md
|
10 |
-
import base64
|
11 |
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
"meta-llama/Meta-Llama-3-8B-Instruct",
|
18 |
-
|
19 |
-
|
20 |
-
]
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
"NeuML/pubmedbert-base-embeddings",
|
25 |
-
"BAAI/llm-embedder",
|
26 |
-
"BAAI/bge-large-en"
|
27 |
-
]
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
selected_embed_model_name = embed_models[0]
|
32 |
-
vector_index = None
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
file_extractor = {ext: parser for ext in ['.pdf', '.docx', '.doc', '.txt', '.csv', '.xlsx', '.pptx', '.html', '.jpg', '.jpeg', '.png', '.webp', '.svg']}
|
37 |
|
38 |
-
|
39 |
-
|
40 |
try:
|
|
|
41 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
42 |
-
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
43 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
|
|
44 |
filename = os.path.basename(file_path)
|
45 |
-
return f"Ready to give response on {filename}"
|
46 |
except Exception as e:
|
47 |
-
return f"An error occurred
|
48 |
-
|
49 |
-
def set_llm_model(selected_model):
|
50 |
-
global selected_llm_model_name
|
51 |
-
selected_llm_model_name = selected_model
|
52 |
-
return f"Model set to: {selected_model}"
|
53 |
|
54 |
def respond(message, history):
|
55 |
try:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
token=os.getenv("TOKEN")
|
65 |
-
)
|
66 |
-
if vector_index is not None:
|
67 |
-
query_engine = vector_index.as_query_engine(llm=llm)
|
68 |
-
bot_message = str(query_engine.query(message))
|
69 |
-
history.append((message, bot_message))
|
70 |
-
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {bot_message}\n")
|
71 |
-
return bot_message, history
|
72 |
-
else:
|
73 |
-
return "Please upload a file first.", history
|
74 |
except Exception as e:
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
with gr.TabItem("Intro"):
|
102 |
-
gr.Markdown(description)
|
103 |
-
|
104 |
-
with gr.TabItem("DocBot"):
|
105 |
-
with gr.Accordion("=== IMPORTANT: READ ME FIRST ===", open=False):
|
106 |
-
gr.Markdown(guide)
|
107 |
-
|
108 |
-
with gr.Row():
|
109 |
-
with gr.Column(scale=1):
|
110 |
-
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
|
111 |
-
embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True)
|
112 |
-
with gr.Row():
|
113 |
-
btn = gr.Button("Submit", variant='primary')
|
114 |
-
clear = gr.ClearButton()
|
115 |
-
output = gr.Text(label='Vector Index')
|
116 |
-
llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True)
|
117 |
-
model_selected_output = gr.Text(label="Model selected")
|
118 |
-
|
119 |
-
with gr.Column(scale=3):
|
120 |
-
chatbot_ui = gr.Chatbot(height=500)
|
121 |
-
message = gr.Textbox(placeholder="Step-4: Ask me questions on the uploaded document!", container=False)
|
122 |
-
submit_btn = gr.Button("Send")
|
123 |
-
|
124 |
-
# Bind logic
|
125 |
-
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown, outputs=model_selected_output)
|
126 |
-
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output)
|
127 |
-
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output])
|
128 |
-
|
129 |
-
# Chat logic
|
130 |
-
state = gr.State([])
|
131 |
-
submit_btn.click(fn=respond, inputs=[message, state], outputs=[chatbot_ui, state])
|
132 |
-
message.submit(fn=respond, inputs=[message, state], outputs=[chatbot_ui, state])
|
133 |
-
|
134 |
-
gr.HTML(footer)
|
135 |
-
|
136 |
if __name__ == "__main__":
|
137 |
demo.launch(share=True)
|
|
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
import gradio as gr
|
|
|
|
|
9 |
|
10 |
# Load environment variables
|
11 |
load_dotenv()
|
12 |
|
13 |
+
# Initialize the LLM and parser
|
14 |
+
llm = HuggingFaceInferenceAPI(
|
15 |
+
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
16 |
+
token=os.getenv("TOKEN")
|
17 |
+
)
|
|
|
18 |
|
19 |
+
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
20 |
+
file_extractor = {'.pdf': parser, '.docx': parser, '.doc': parser}
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Embedding model and index initialization (to be populated by uploaded files)
|
23 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
|
|
|
|
24 |
|
25 |
+
# Global variable to store documents loaded from user-uploaded files
|
26 |
+
vector_index = None
|
|
|
27 |
|
28 |
+
# File processing function
|
29 |
+
def load_files(file_path: str):
|
30 |
try:
|
31 |
+
global vector_index
|
32 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
|
|
33 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
34 |
+
print(f"parsing done {file_path}")
|
35 |
filename = os.path.basename(file_path)
|
36 |
+
return f"Ready to give response on give {filename}"
|
37 |
except Exception as e:
|
38 |
+
return f"An error occurred {e}"
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def respond(message, history):
|
41 |
try:
|
42 |
+
query_engine = vector_index.as_query_engine(llm=llm)
|
43 |
+
bot_message = query_engine.query(message)
|
44 |
+
# output = ""
|
45 |
+
# for chr in bot_message:
|
46 |
+
# output += chr
|
47 |
+
# yield output
|
48 |
+
print(f"{datetime.now()}::message=>{str(bot_message)}")
|
49 |
+
return str(bot_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
except Exception as e:
|
51 |
+
if e == "'NoneType' object has no attribute 'as_query_engine'":
|
52 |
+
return "upload file"
|
53 |
+
return f"an error occurred {e}"
|
54 |
+
|
55 |
+
# UI Setup
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
with gr.Row():
|
58 |
+
with gr.Column(scale=1):
|
59 |
+
file_input = gr.File(file_count="single", type='filepath')
|
60 |
+
with gr.Column():
|
61 |
+
clear = gr.ClearButton()
|
62 |
+
btn = gr.Button("Submit", variant='primary')
|
63 |
+
output = gr.Text(label='Vector Index')
|
64 |
+
with gr.Column(scale=2):
|
65 |
+
gr.ChatInterface(fn=respond,
|
66 |
+
chatbot=gr.Chatbot(height=500),
|
67 |
+
textbox=gr.Textbox(placeholder="Ask me a yes or no question", container=False, scale=7),
|
68 |
+
examples=["summarize the document"]
|
69 |
+
)
|
70 |
+
|
71 |
+
# Action on button click to process file and load into index
|
72 |
+
btn.click(fn=load_files, inputs=file_input, outputs=output)
|
73 |
+
clear.click(lambda: [None]*2, outputs=[file_input, output])
|
74 |
+
|
75 |
+
|
76 |
+
# Launch the demo with public link option
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
if __name__ == "__main__":
|
78 |
demo.launch(share=True)
|