Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
import gradio as gr
|
9 |
-
import markdowm as md
|
10 |
import base64
|
11 |
|
12 |
# Load environment variables
|
@@ -17,32 +16,6 @@ llm_models = [
|
|
17 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
18 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
19 |
"tiiuae/falcon-7b-instruct",
|
20 |
-
# "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
21 |
-
# "deepseek-ai/deepseek-vl2", ## 54GB > 10GB
|
22 |
-
# "deepseek-ai/deepseek-vl2-small", ## 32GB > 10GB
|
23 |
-
# "deepseek-ai/deepseek-vl2-tiny", ## high response time
|
24 |
-
# "deepseek-ai/deepseek-llm-7b-chat", ## 13GB > 10GB
|
25 |
-
# "deepseek-ai/deepseek-math-7b-instruct", ## 13GB > 10GB
|
26 |
-
# "deepseek-ai/deepseek-coder-33b-instruct", ## 66GB > 10GB
|
27 |
-
# "deepseek-ai/DeepSeek-R1-Zero", ## 688GB > 10GB
|
28 |
-
# "mistralai/Mixtral-8x22B-Instruct-v0.1", ## 281GB>10GB
|
29 |
-
# "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
|
30 |
-
# "impira/layoutlm-document-qa", ## ERR
|
31 |
-
# "Qwen/Qwen1.5-7B", ## 15GB
|
32 |
-
# "Qwen/Qwen2.5-3B", ## high response time
|
33 |
-
# "google/gemma-2-2b-jpn-it", ## high response time
|
34 |
-
# "impira/layoutlm-invoices", ## bad req
|
35 |
-
# "google/pix2struct-docvqa-large", ## bad req
|
36 |
-
# "google/gemma-7b-it", ## 17GB > 10GB
|
37 |
-
# "google/gemma-2b-it", ## high response time
|
38 |
-
# "HuggingFaceH4/zephyr-7b-beta", ## high response time
|
39 |
-
# "HuggingFaceH4/zephyr-7b-gemma-v0.1", ## bad req
|
40 |
-
# "microsoft/phi-2", ## high response time
|
41 |
-
# "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
|
42 |
-
# "mosaicml/mpt-7b-instruct", ## 13GB>10GB
|
43 |
-
# "google/flan-t5-xxl" ## high respons time
|
44 |
-
# "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
|
45 |
-
# "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
|
46 |
]
|
47 |
|
48 |
embed_models = [
|
@@ -59,6 +32,7 @@ vector_index = None
|
|
59 |
|
60 |
# Initialize the parser
|
61 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
|
|
62 |
# Define file extractor with various common extensions
|
63 |
file_extractor = {
|
64 |
'.pdf': parser, # PDF documents
|
@@ -66,62 +40,109 @@ file_extractor = {
|
|
66 |
'.doc': parser, # Older Microsoft Word documents
|
67 |
'.txt': parser, # Plain text files
|
68 |
'.csv': parser, # Comma-separated values files
|
69 |
-
'.xlsx': parser, # Microsoft Excel files
|
70 |
-
'.pptx': parser, # Microsoft PowerPoint files
|
71 |
-
'.html': parser, # HTML files
|
72 |
-
# '.rtf': parser, # Rich Text Format files
|
73 |
-
# '.odt': parser, # OpenDocument Text files
|
74 |
-
# '.epub': parser, # ePub files (e-books)
|
75 |
-
|
76 |
-
# Image files for OCR processing
|
77 |
'.jpg': parser, # JPEG images
|
78 |
'.jpeg': parser, # JPEG images
|
79 |
'.png': parser, # PNG images
|
80 |
-
# '.bmp': parser, # Bitmap images
|
81 |
-
# '.tiff': parser, # TIFF images
|
82 |
-
# '.tif': parser, # TIFF images (alternative extension)
|
83 |
-
# '.gif': parser, # GIF images (can contain text)
|
84 |
-
|
85 |
-
# Scanned documents in image formats
|
86 |
'.webp': parser, # WebP images
|
87 |
-
'.svg': parser, # SVG files
|
88 |
}
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# File processing function
|
92 |
def load_files(file_path: str, embed_model_name: str):
|
93 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
global vector_index
|
95 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
96 |
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
97 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
98 |
print(f"Parsing done for {file_path}")
|
99 |
filename = os.path.basename(file_path)
|
100 |
-
return f"Ready to
|
101 |
except Exception as e:
|
102 |
-
return f"An error occurred: {e}"
|
103 |
-
|
104 |
|
105 |
# Function to handle the selected model from dropdown
|
106 |
def set_llm_model(selected_model):
|
107 |
global selected_llm_model_name
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
|
113 |
# Respond function that uses the globally set selected model
|
114 |
def respond(message, history):
|
115 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
# Initialize the LLM with the selected model
|
117 |
llm = HuggingFaceInferenceAPI(
|
118 |
model_name=selected_llm_model_name,
|
119 |
-
contextWindow=8192,
|
120 |
-
maxTokens=1024,
|
121 |
-
temperature=0.3,
|
122 |
-
topP=0.9,
|
123 |
-
frequencyPenalty=0.5,
|
124 |
-
presencePenalty=0.5,
|
125 |
token=os.getenv("TOKEN")
|
126 |
)
|
127 |
|
@@ -130,58 +151,151 @@ def respond(message, history):
|
|
130 |
bot_message = query_engine.query(message)
|
131 |
|
132 |
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
|
133 |
-
return f"{selected_llm_model_name}
|
134 |
except Exception as e:
|
135 |
-
|
136 |
-
return "Please upload a file."
|
137 |
-
return f"An error occurred: {e}"
|
138 |
|
139 |
-
def
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
147 |
|
148 |
-
#
|
|
|
|
|
|
|
149 |
|
150 |
# UI Setup
|
151 |
-
with gr.Blocks(
|
152 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
with gr.Tabs():
|
154 |
-
with gr.TabItem("
|
155 |
-
gr.Markdown(
|
156 |
|
157 |
-
with gr.TabItem("DocBot"):
|
158 |
-
with gr.Accordion("
|
159 |
-
|
|
|
160 |
with gr.Row():
|
161 |
with gr.Column(scale=1):
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
)
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
# Launch the demo
|
186 |
if __name__ == "__main__":
|
187 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
import gradio as gr
|
|
|
9 |
import base64
|
10 |
|
11 |
# Load environment variables
|
|
|
16 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
17 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
18 |
"tiiuae/falcon-7b-instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
]
|
20 |
|
21 |
embed_models = [
|
|
|
32 |
|
33 |
# Initialize the parser
|
34 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
35 |
+
|
36 |
# Define file extractor with various common extensions
|
37 |
file_extractor = {
|
38 |
'.pdf': parser, # PDF documents
|
|
|
40 |
'.doc': parser, # Older Microsoft Word documents
|
41 |
'.txt': parser, # Plain text files
|
42 |
'.csv': parser, # Comma-separated values files
|
43 |
+
'.xlsx': parser, # Microsoft Excel files
|
44 |
+
'.pptx': parser, # Microsoft PowerPoint files
|
45 |
+
'.html': parser, # HTML files
|
|
|
|
|
|
|
|
|
|
|
46 |
'.jpg': parser, # JPEG images
|
47 |
'.jpeg': parser, # JPEG images
|
48 |
'.png': parser, # PNG images
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
'.webp': parser, # WebP images
|
50 |
+
'.svg': parser, # SVG files
|
51 |
}
|
52 |
|
53 |
+
# Markdown content definitions
|
54 |
+
description = """
|
55 |
+
## Welcome to DocBot ππ€
|
56 |
+
|
57 |
+
DocBot is an intelligent document analysis tool that can help you extract insights from various document formats including:
|
58 |
+
- PDF documents
|
59 |
+
- Word documents (.docx, .doc)
|
60 |
+
- Text files
|
61 |
+
- CSV files
|
62 |
+
- Excel files
|
63 |
+
- PowerPoint presentations
|
64 |
+
- HTML files
|
65 |
+
- Images with text (JPG, PNG, WebP, SVG)
|
66 |
+
|
67 |
+
Simply upload your document, select your preferred embedding model and LLM, then start asking questions!
|
68 |
+
"""
|
69 |
+
|
70 |
+
guide = """
|
71 |
+
### How to Use DocBot:
|
72 |
+
|
73 |
+
1. **Upload Document**: Choose any supported file format
|
74 |
+
2. **Select Embedding Model**: Choose from available embedding models (BAAI/bge-small-en-v1.5 is recommended for most cases)
|
75 |
+
3. **Submit**: Click submit to process your document
|
76 |
+
4. **Select LLM**: Choose your preferred language model
|
77 |
+
5. **Ask Questions**: Start chatting with your document!
|
78 |
+
|
79 |
+
### Tips:
|
80 |
+
- Smaller embedding models (like bge-small-en-v1.5) are faster but may be less accurate
|
81 |
+
- Larger models provide better understanding but take more time
|
82 |
+
- Be specific in your questions for better results
|
83 |
+
"""
|
84 |
+
|
85 |
+
footer = """
|
86 |
+
<div style="text-align: center; margin-top: 20px; padding: 20px; border-top: 1px solid #ddd;">
|
87 |
+
<p>Built with β€οΈ using LlamaIndex and Gradio</p>
|
88 |
+
<div style="display: flex; justify-content: center; gap: 20px; margin-top: 10px;">
|
89 |
+
<a href="https://github.com" target="_blank">
|
90 |
+
<img src="data:image/png;base64,{0}" alt="GitHub" style="width: 24px; height: 24px;">
|
91 |
+
</a>
|
92 |
+
<a href="https://linkedin.com" target="_blank">
|
93 |
+
<img src="data:image/png;base64,{1}" alt="LinkedIn" style="width: 24px; height: 24px;">
|
94 |
+
</a>
|
95 |
+
<a href="https://your-website.com" target="_blank">
|
96 |
+
<img src="data:image/png;base64,{2}" alt="Website" style="width: 24px; height: 24px;">
|
97 |
+
</a>
|
98 |
+
</div>
|
99 |
+
</div>
|
100 |
+
"""
|
101 |
|
102 |
# File processing function
|
103 |
def load_files(file_path: str, embed_model_name: str):
|
104 |
try:
|
105 |
+
if not file_path:
|
106 |
+
return "Please select a file first."
|
107 |
+
|
108 |
+
if not embed_model_name:
|
109 |
+
return "Please select an embedding model."
|
110 |
+
|
111 |
global vector_index
|
112 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
113 |
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
114 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
115 |
print(f"Parsing done for {file_path}")
|
116 |
filename = os.path.basename(file_path)
|
117 |
+
return f"β
Ready to answer questions about: {filename}"
|
118 |
except Exception as e:
|
119 |
+
return f"β An error occurred: {str(e)}"
|
|
|
120 |
|
121 |
# Function to handle the selected model from dropdown
|
122 |
def set_llm_model(selected_model):
|
123 |
global selected_llm_model_name
|
124 |
+
if selected_model:
|
125 |
+
selected_llm_model_name = selected_model
|
126 |
+
return f"LLM set to: {selected_model}"
|
|
|
127 |
|
128 |
# Respond function that uses the globally set selected model
|
129 |
def respond(message, history):
|
130 |
try:
|
131 |
+
if not vector_index:
|
132 |
+
return "Please upload and process a document first."
|
133 |
+
|
134 |
+
if not message.strip():
|
135 |
+
return "Please enter a question."
|
136 |
+
|
137 |
# Initialize the LLM with the selected model
|
138 |
llm = HuggingFaceInferenceAPI(
|
139 |
model_name=selected_llm_model_name,
|
140 |
+
contextWindow=8192,
|
141 |
+
maxTokens=1024,
|
142 |
+
temperature=0.3,
|
143 |
+
topP=0.9,
|
144 |
+
frequencyPenalty=0.5,
|
145 |
+
presencePenalty=0.5,
|
146 |
token=os.getenv("TOKEN")
|
147 |
)
|
148 |
|
|
|
151 |
bot_message = query_engine.query(message)
|
152 |
|
153 |
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
|
154 |
+
return f"**{selected_llm_model_name}:**\n\n{str(bot_message)}"
|
155 |
except Exception as e:
|
156 |
+
return f"β An error occurred: {str(e)}"
|
|
|
|
|
157 |
|
158 |
+
def encode_image_safe(image_path):
|
159 |
+
"""Safely encode image, return empty string if file doesn't exist"""
|
160 |
+
try:
|
161 |
+
if os.path.exists(image_path):
|
162 |
+
with open(image_path, "rb") as image_file:
|
163 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
164 |
+
except Exception:
|
165 |
+
pass
|
166 |
+
return ""
|
167 |
|
168 |
+
# Encode the images (with fallback for missing images)
|
169 |
+
github_logo_encoded = encode_image_safe("Images/github-logo.png")
|
170 |
+
linkedin_logo_encoded = encode_image_safe("Images/linkedin-logo.png")
|
171 |
+
website_logo_encoded = encode_image_safe("Images/ai-logo.png")
|
172 |
|
173 |
# UI Setup
|
174 |
+
with gr.Blocks(
|
175 |
+
theme=gr.themes.Soft(),
|
176 |
+
css='footer {visibility: hidden}',
|
177 |
+
title="DocBot - Document Analysis Assistant"
|
178 |
+
) as demo:
|
179 |
+
|
180 |
+
gr.Markdown("# DocBot ππ€")
|
181 |
+
gr.Markdown("*Intelligent Document Analysis Assistant*")
|
182 |
+
|
183 |
with gr.Tabs():
|
184 |
+
with gr.TabItem("π Introduction"):
|
185 |
+
gr.Markdown(description)
|
186 |
|
187 |
+
with gr.TabItem("π€ DocBot"):
|
188 |
+
with gr.Accordion("π Quick Start Guide", open=False):
|
189 |
+
gr.Markdown(guide)
|
190 |
+
|
191 |
with gr.Row():
|
192 |
with gr.Column(scale=1):
|
193 |
+
with gr.Group():
|
194 |
+
gr.Markdown("### Document Processing")
|
195 |
+
file_input = gr.File(
|
196 |
+
file_count="single",
|
197 |
+
type='filepath',
|
198 |
+
label="Step 1: Upload Document",
|
199 |
+
file_types=['.pdf', '.docx', '.doc', '.txt', '.csv', '.xlsx', '.pptx', '.html', '.jpg', '.jpeg', '.png', '.webp', '.svg']
|
200 |
+
)
|
201 |
+
|
202 |
+
embed_model_dropdown = gr.Dropdown(
|
203 |
+
choices=embed_models,
|
204 |
+
label="Step 2: Select Embedding Model",
|
205 |
+
interactive=True,
|
206 |
+
value=embed_models[0]
|
207 |
+
)
|
208 |
+
|
209 |
+
with gr.Row():
|
210 |
+
btn = gr.Button("π Process Document", variant='primary', size="lg")
|
211 |
+
clear = gr.ClearButton("ποΈ Clear", size="lg")
|
212 |
+
|
213 |
+
output = gr.Textbox(
|
214 |
+
label='Processing Status',
|
215 |
+
interactive=False,
|
216 |
+
placeholder="Upload a document and click 'Process Document' to begin..."
|
217 |
+
)
|
218 |
+
|
219 |
+
with gr.Group():
|
220 |
+
gr.Markdown("### Model Selection")
|
221 |
+
llm_model_dropdown = gr.Dropdown(
|
222 |
+
choices=llm_models,
|
223 |
+
label="Step 3: Select Language Model",
|
224 |
+
interactive=True,
|
225 |
+
value=llm_models[0]
|
226 |
+
)
|
227 |
+
llm_status = gr.Textbox(
|
228 |
+
label="Selected Model",
|
229 |
+
interactive=False,
|
230 |
+
value=f"LLM set to: {llm_models[0]}"
|
231 |
+
)
|
232 |
+
|
233 |
+
with gr.Column(scale=2):
|
234 |
+
gr.Markdown("### Chat with Your Document")
|
235 |
+
chatbot = gr.Chatbot(
|
236 |
+
height=600,
|
237 |
+
placeholder="Process a document first, then start asking questions!",
|
238 |
+
show_label=False
|
239 |
+
)
|
240 |
+
|
241 |
+
msg = gr.Textbox(
|
242 |
+
placeholder="Step 4: Ask questions about your document...",
|
243 |
+
container=False,
|
244 |
+
scale=7
|
245 |
)
|
246 |
+
|
247 |
+
with gr.Row():
|
248 |
+
submit_btn = gr.Button("Send", variant="primary")
|
249 |
+
clear_chat = gr.ClearButton([msg, chatbot], value="Clear Chat")
|
250 |
+
|
251 |
+
# Add footer if images exist
|
252 |
+
if any([github_logo_encoded, linkedin_logo_encoded, website_logo_encoded]):
|
253 |
+
gr.HTML(footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
|
254 |
+
|
255 |
+
# Set up event handlers
|
256 |
+
def chat_respond(message, history):
|
257 |
+
if not message.strip():
|
258 |
+
return history, ""
|
259 |
+
|
260 |
+
response = respond(message, history)
|
261 |
+
history.append([message, response])
|
262 |
+
return history, ""
|
263 |
+
|
264 |
+
# Event bindings
|
265 |
+
llm_model_dropdown.change(
|
266 |
+
fn=set_llm_model,
|
267 |
+
inputs=[llm_model_dropdown],
|
268 |
+
outputs=[llm_status]
|
269 |
+
)
|
270 |
+
|
271 |
+
btn.click(
|
272 |
+
fn=load_files,
|
273 |
+
inputs=[file_input, embed_model_dropdown],
|
274 |
+
outputs=[output]
|
275 |
+
)
|
276 |
+
|
277 |
+
submit_btn.click(
|
278 |
+
fn=chat_respond,
|
279 |
+
inputs=[msg, chatbot],
|
280 |
+
outputs=[chatbot, msg]
|
281 |
+
)
|
282 |
+
|
283 |
+
msg.submit(
|
284 |
+
fn=chat_respond,
|
285 |
+
inputs=[msg, chatbot],
|
286 |
+
outputs=[chatbot, msg]
|
287 |
+
)
|
288 |
+
|
289 |
+
clear.click(
|
290 |
+
lambda: [None, None, ""],
|
291 |
+
outputs=[file_input, embed_model_dropdown, output]
|
292 |
+
)
|
293 |
|
294 |
+
# Launch the demo
|
295 |
if __name__ == "__main__":
|
296 |
+
demo.launch(
|
297 |
+
share=True,
|
298 |
+
server_name="0.0.0.0",
|
299 |
+
server_port=7860,
|
300 |
+
show_error=True
|
301 |
+
)
|