Spaces:
Running
Running
File size: 5,254 Bytes
55326b1 b90b1d7 55326b1 261f4cb c9df082 55326b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import gradio as gr
import ObjCharRec
from deep_translator import GoogleTranslator
import markdown as md
import translate_speak
import base64
langs_list = GoogleTranslator().get_supported_languages()
langs_dict = GoogleTranslator().get_supported_languages(as_dict=True)
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Encode the images
github_logo_encoded = encode_image("Images/github-logo.png")
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png")
website_logo_encoded = encode_image("Images/ai-logo.png")
usecase_img_encoded = encode_image("Images/UML/Usecase.png")
class_img_encoded = encode_image("Images/UML/class.png")
object_img_encoded = encode_image("Images/UML/object.png")
sequence_img_encoded = encode_image("Images/UML/sequence.png")
component_img_encoded = encode_image("Images/UML/component.png")
colab_img_encoded = encode_image("Images/UML/colab.png")
activity_img_encoded = encode_image("Images/UML/activity.png")
css = '''
/* Header Styling */
h3, h4 {
margin-top: 1.2em;
margin-bottom: 0.6em;
font-weight: bold;
}
h3 {
font-size: 1.7em;
border-bottom: 2px solid #00b9c2;
color: 00b9c2;
padding-bottom: 0.3em;
margin-bottom: 1em;
}
h4 {
font-size: 1.5em;
}
code {
color: rgb(202 253 255);
}
code1{
color: #00b9c2;
}
/* Text Emphasis */
p, li {
text-align: justify;
margin: 0.6em 0;
font-size: 1.2em;
}
em {
color: #6c757d;
font-style: italic;
}
/* List Styling */
ul {
padding-left: 1.2em;
margin-bottom: 1em;
}
li {
margin-bottom: 0.5em;
}
/* Link Styling */
a {
color: #007bff;
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
/* Image Styling */
img {
border-radius: 8px;
box-shadow: -8px 8px 20px 0px rgb(0 185 194)
i
}
/* Divider Styling */
hr {
border: 0;
height: 1px;
background: linear-gradient(to right, rgba(0,0,0,0), rgba(0,0,0,0.3), rgba(0,0,0,0));
margin: 1.5em 0;
}
footer {visibility: hidden}
'''
with gr.Blocks(theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Noto Sans")]), css=css) as main_interface:
gr.Markdown("# Welcome to The Linguistic Lens 👓🗣️")
with gr.Tabs():
with gr.TabItem("Intro"):
gr.HTML(md.description)
# gr.HTML(md.usecase_diagram.format(usecase_img_encoded))
# gr.HTML(md.class_diagram.format(class_img_encoded))
# gr.HTML(md.object_diagram.format(object_img_encoded))
# gr.HTML(md.sequence_diagram.format(sequence_img_encoded))
# gr.HTML(md.colab_diagram.format(colab_img_encoded))
# gr.HTML(md.activity_diagram.format(activity_img_encoded))
# gr.HTML(md.component_diagram.format(component_img_encoded))
with gr.TabItem("⭐Translator"):
with gr.Row():
with gr.Column():
with gr.Row():
image_input = gr.Image(label="Upload Image")
with gr.Row():
clear_btn = gr.ClearButton()
submit_btn = gr.Button("Submit")
with gr.Column():
with gr.Row():
output_text = gr.Text(label="Output")
audio_out = gr.Audio(label="Streamed Audio")
lang_drop = gr.Dropdown(langs_dict, label="language", interactive=True)
translate_btn = gr.Button("Translate")
with gr.Row():
translated_txt = gr.Text(label="translated text")
translated_out = gr.Audio(label="Streamed Audio")
submit_btn.click(fn=ObjCharRec.ocr_with_paddle, inputs=image_input, outputs=[output_text, audio_out])
translate_btn.click(fn=translate_speak.translate_txt, inputs=[lang_drop, output_text],
outputs=[translated_txt, translated_out])
clear_btn.click(lambda: [None] * 5, outputs=[image_input, output_text, translated_txt, translated_out, audio_out])
with gr.TabItem("Simple OCR"):
gr.Markdown("Paddle OCR")
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Image")
with gr.Row():
clear_btn = gr.ClearButton()
submit_btn = gr.Button("Submit")
output_text = gr.Text(label="Output")
submit_btn.click(fn=ObjCharRec.ocr_with_paddle, inputs=image_input, outputs=output_text)
clear_btn.click(lambda :[None]*2, outputs=[image_input, output_text])
gr.HTML(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
# gr.Markdown(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
if __name__ == "__main__":
main_interface.launch()
|