Spaces:
Running
Running
import gradio as gr | |
import requests | |
import os # Import the os module to use environment variables | |
# Load Hugging Face API Key from Hugging Face Secrets | |
HF_API_KEY = os.getenv("IBMGraniteTextSummary") | |
# IBM Granite 3B model | |
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct" | |
# Function for text summarization | |
def summarize_text(text): | |
if not HF_API_KEY: | |
return "Error: No API key found. Please check your Hugging Face Secrets." | |
url = f"https://api-inference.huggingface.co/models/{MODEL_NAME}" | |
headers = {"Authorization": f"Bearer {HF_API_KEY}"} | |
prompt = f"Summarize the following text in 5 sentences. Focus on the key points:\n\n{text}" | |
payload = {"inputs": prompt} | |
response = requests.post(url, headers=headers, json=payload) | |
if response.status_code == 200: | |
result = response.json() | |
return result[0]["generated_text"] if result else "No response received." | |
else: | |
return f"Error: {response.status_code} - {response.text}" | |
# Gradio UI | |
iface = gr.Interface( | |
fn=summarize_text, | |
inputs=gr.Textbox(label="Enter your text", lines=5), | |
outputs=gr.Textbox(label="Summary"), | |
title="IBM Granite Text Summarizer", | |
description="This tool uses IBM Granite-3B to summarize texts. Enter a long text, and Granite will generate a concise summary!" | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() |