VCardWizard / app.py
SarowarSaurav's picture
Update app.py
13ef1fa verified
raw
history blame
2.06 kB
import gradio as gr
from ultralytics import YOLO
from PIL import Image
import numpy as np
import cv2
# Load the pre-trained YOLOv5 model
# Use 'yolov5s' or any available YOLO model from ultralytics
model = YOLO('yolov5s') # Change to a leaf disease detection model if available
def identify_disease(image):
# Convert the image to RGB if it's not
if image.mode != 'RGB':
image = image.convert('RGB')
# Perform inference
results = model(image)
# Extract predictions
predictions = results[0]
boxes = predictions.boxes
labels = boxes.cls.cpu().numpy()
scores = boxes.conf.cpu().numpy()
class_names = model.names
# Annotate image with bounding boxes and labels
annotated_image = np.array(image)
for box, label, score in zip(boxes.xyxy.cpu().numpy(), labels, scores):
x1, y1, x2, y2 = map(int, box)
class_name = class_names[int(label)]
confidence = f"{score * 100:.2f}%"
annotated_image = cv2.rectangle(annotated_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
annotated_image = cv2.putText(annotated_image, f"{class_name} {confidence}", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Convert annotated image back to PIL format
annotated_image = Image.fromarray(annotated_image)
# Prepare results for display
results_list = [{"Disease": class_names[int(label)], "Confidence": f"{score * 100:.2f}%"} for label, score in zip(labels, scores)]
return annotated_image, results_list
# Define Gradio interface
interface = gr.Interface(
fn=identify_disease,
inputs=gr.inputs.Image(type="pil"),
outputs=[
gr.outputs.Image(type="pil", label="Annotated Image"),
gr.outputs.Dataframe(headers=["Disease", "Confidence"], label="Predictions")
],
title="Leaf Disease Identifier with YOLOv5",
description="Upload an image of a leaf, and this tool will identify the disease with confidence scores."
)
# Launch the app
interface.launch()