Spaces:
Sleeping
Sleeping
SarowarSaurav
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,12 @@ from PIL import Image
|
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
|
7 |
-
# Load the YOLOv8 model (
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def identify_disease(image):
|
11 |
# Convert the image to RGB if it's not
|
@@ -13,12 +17,17 @@ def identify_disease(image):
|
|
13 |
image = image.convert('RGB')
|
14 |
|
15 |
# Perform inference
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Check if there are any detections
|
20 |
if len(predictions.boxes) == 0:
|
21 |
-
|
22 |
annotated_image = np.array(image)
|
23 |
cv2.putText(annotated_image, "No disease detected", (10, 30),
|
24 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
@@ -27,10 +36,10 @@ def identify_disease(image):
|
|
27 |
|
28 |
# Extract predictions
|
29 |
boxes = predictions.boxes
|
30 |
-
labels = boxes.cls.cpu().numpy()
|
31 |
-
scores = boxes.conf.cpu().numpy()
|
32 |
class_names = model.names
|
33 |
-
|
34 |
# Annotate image with bounding boxes and labels
|
35 |
annotated_image = np.array(image)
|
36 |
for box, label, score in zip(boxes.xyxy.cpu().numpy(), labels, scores):
|
|
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
|
7 |
+
# Load the YOLOv8 model (make sure the path is correct and model is downloaded)
|
8 |
+
try:
|
9 |
+
model = YOLO('yolov8n.pt')
|
10 |
+
print("Model loaded successfully.")
|
11 |
+
except Exception as e:
|
12 |
+
print(f"Error loading model: {e}")
|
13 |
|
14 |
def identify_disease(image):
|
15 |
# Convert the image to RGB if it's not
|
|
|
17 |
image = image.convert('RGB')
|
18 |
|
19 |
# Perform inference
|
20 |
+
try:
|
21 |
+
results = model(image)
|
22 |
+
predictions = results[0]
|
23 |
+
print("Inference completed.")
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error during inference: {e}")
|
26 |
+
return image, [{"Disease": "Error", "Confidence": "N/A"}]
|
27 |
|
28 |
# Check if there are any detections
|
29 |
if len(predictions.boxes) == 0:
|
30 |
+
print("No detections found.")
|
31 |
annotated_image = np.array(image)
|
32 |
cv2.putText(annotated_image, "No disease detected", (10, 30),
|
33 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
|
|
36 |
|
37 |
# Extract predictions
|
38 |
boxes = predictions.boxes
|
39 |
+
labels = boxes.cls.cpu().numpy() if boxes.cls is not None else []
|
40 |
+
scores = boxes.conf.cpu().numpy() if boxes.conf is not None else []
|
41 |
class_names = model.names
|
42 |
+
|
43 |
# Annotate image with bounding boxes and labels
|
44 |
annotated_image = np.array(image)
|
45 |
for box, label, score in zip(boxes.xyxy.cpu().numpy(), labels, scores):
|