Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the Hugging Face model
|
5 |
+
model = "deepset/bert-base-cased-squad2"
|
6 |
+
qa_pipeline = pipeline("question-answering", model=model, tokenizer=model)
|
7 |
+
|
8 |
+
# Define the function to answer questions
|
9 |
+
def get_answer(text):
|
10 |
+
result = qa_pipeline({
|
11 |
+
"question": text,
|
12 |
+
"context": knowledge_base_text
|
13 |
+
})
|
14 |
+
return result["answer"]
|
15 |
+
|
16 |
+
# Define the Gradio interface
|
17 |
+
def chatbot_interface(text):
|
18 |
+
answer = get_answer(text)
|
19 |
+
return answer
|
20 |
+
|
21 |
+
knowledge_base_file = "knowledge_base.txt" # Path to the knowledge base text file
|
22 |
+
|
23 |
+
# Load the knowledge base from a text file
|
24 |
+
with open(knowledge_base_file, "r") as f:
|
25 |
+
knowledge_base_text = f.read()
|
26 |
+
|
27 |
+
# Create the Gradio interface
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=chatbot_interface,
|
30 |
+
inputs="Ask any questions about BATB",
|
31 |
+
outputs="Result",
|
32 |
+
title="British American Tobacco Bangladesh",
|
33 |
+
description="- powered by IDT",
|
34 |
+
theme="default"
|
35 |
+
)
|
36 |
+
|
37 |
+
# Run the Gradio interface
|
38 |
+
iface.launch()
|