Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,15 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
break
|
17 |
-
|
18 |
-
# Generate answer using the model
|
19 |
-
answer = qa_pipeline(question=question, context="")
|
20 |
-
|
21 |
-
# Print the answer
|
22 |
-
print("Chatbot:", answer['answer'])
|
23 |
-
|
24 |
-
|
25 |
-
# Start chatting
|
26 |
-
if __name__ == "__main__":
|
27 |
-
print("Welcome to the chatbot! Type 'exit' to end the conversation.")
|
28 |
-
chat_with_bot()
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
|
3 |
+
checkpoint = "HuggingFaceH4/zephyr-7b-beta"
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
5 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint) # You may want to use bfloat16 and/or move to GPU here
|
6 |
+
|
7 |
+
messages = [
|
8 |
+
{
|
9 |
+
"role": "system",
|
10 |
+
"content": "You are a friendly chatbot who always responds in the style of a pirate",
|
11 |
+
},
|
12 |
+
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
|
13 |
+
]
|
14 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
15 |
+
print(tokenizer.decode(tokenized_chat[0]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|