Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -32,14 +32,23 @@ def init_zsl_topic_classification():
|
|
32 |
pipe = pipeline("zero-shot-classification", model=MODEL)
|
33 |
template = "This text is about {}."
|
34 |
return pipe, template
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Model initialization
|
37 |
pipeline_summarization = init_text_summarization_model()
|
38 |
pipeline_zsl, template = init_zsl_topic_classification()
|
|
|
39 |
|
40 |
st.header("Intelligent Document Automation")
|
41 |
|
42 |
-
def get_text_from_ocr_engine(
|
43 |
return "This is a sample text for named entity recognition and other tasks"
|
44 |
|
45 |
with st.sidebar:
|
@@ -52,4 +61,5 @@ if selected_menu == "Upload Document":
|
|
52 |
if uploaded_file is not None:
|
53 |
ocr_text = get_text_from_ocr_engine(uploaded_file)
|
54 |
st.write("Upload Successful")
|
55 |
-
|
|
|
|
32 |
pipe = pipeline("zero-shot-classification", model=MODEL)
|
33 |
template = "This text is about {}."
|
34 |
return pipe, template
|
35 |
+
|
36 |
+
@st.cache(allow_output_mutation = True)
|
37 |
+
def init_ner_pipeline():
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
39 |
+
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
40 |
+
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
|
41 |
+
return pipe
|
42 |
+
|
43 |
|
44 |
# Model initialization
|
45 |
pipeline_summarization = init_text_summarization_model()
|
46 |
pipeline_zsl, template = init_zsl_topic_classification()
|
47 |
+
pipeline_ner =init_ner_pipeline()
|
48 |
|
49 |
st.header("Intelligent Document Automation")
|
50 |
|
51 |
+
def get_text_from_ocr_engine():
|
52 |
return "This is a sample text for named entity recognition and other tasks"
|
53 |
|
54 |
with st.sidebar:
|
|
|
61 |
if uploaded_file is not None:
|
62 |
ocr_text = get_text_from_ocr_engine(uploaded_file)
|
63 |
st.write("Upload Successful")
|
64 |
+
elif selected_menu == "Upload Document:
|
65 |
+
st.write(get_text_from_ocr_engine())
|