import streamlit as st from annotated_text import annotated_text from io import StringIO import os os.environ['KMP_DUPLICATE_LIB_OK']='True' import plotly.express as px from streamlit_option_menu import option_menu st. set_page_config(layout="wide") from transformers import pipeline import pandas as pd @st.cache(allow_output_mutation = True) def init_text_summarization_model(): MODEL = 'facebook/bart-large-cnn' pipe = pipeline("summarization", model=MODEL) return pipe @st.cache(allow_output_mutation = True) def init_zsl_topic_classification(): MODEL = 'facebook/bart-large-mnli' pipe = pipeline("zero-shot-classification", model=MODEL) template = "This text is about {}." return pipe, template # Model initialization pipeline_summarization = init_text_summarization_model() pipeline_zsl, template = init_zsl_topic_classification() st.header("Intelligent Document Automation") uploaded_file = st.file_uploader("Choose a file") def get_text_from_ocr_engine(uploaded_file): return "This is a sample text for named entity recognition and other tasks" if uploaded_file is not None: ocr_text = get_text_from_ocr_engine(uploaded_file) st.write(ocr_text)