Spaces:
Runtime error
Runtime error
File size: 1,483 Bytes
b58c818 1256a85 b58c818 ab5688d cd3df30 ab5688d b58c818 b4ace98 b58c818 ab5688d cd3df30 ab5688d bd84a02 ab5688d bd84a02 d2f7d16 bd84a02 2b90304 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import transformers
import streamlit as st
from transformers import AutoTokenizer, AutoModelWithLMHead
from transformers import pipeline
#tokenizer = AutoTokenizer.from_pretrained("gpt2-medium")
@st.cache
def load_model(model_name):
model = AutoModelWithLMHead.from_pretrained(model_name)
return model
def load_text_gen_model():
generator = pipeline("text-generation", model="gpt2-medium")
return generator
@st.cache
def get_sentiment_model():
sentiment_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")
sentiment_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")
return sentiment_model ,sentiment_tokenizer
def get_sentiment(text):
input_ids = sentiment_tokenizer .encode(text + '</s>', return_tensors='pt')
output = sentiment_model.generate(input_ids=input_ids,max_length=2)
dec = [tokenizer.decode(ids) for ids in output]
label = dec[0]
return label
sentiment_model ,sentiment_tokenizer = get_sentiment_model()
text_generator = load_text_gen_model()
action = st.sidebar.selectbox("Pick an Action", ["Analyse a Review","Generate an Article","Create an Image"])
if action == "Analyse a Review":
review = st.text_area("Paste the review here..")
if review:
#res = text_generator( prompt, max_length=100, temperature=0.7)
#st.write(res)
sentiment = get_sentiment(review)
st.write(sentiment)
|