Spaces:
Runtime error
Runtime error
File size: 2,299 Bytes
b58c818 1256a85 b58c818 ab5688d cd3df30 9fec945 ab5688d b58c818 b4ace98 b58c818 ab5688d cd3df30 ab5688d bd84a02 9fec945 bd84a02 e7f3263 bd84a02 87d90ac d79cd77 4f75d26 ce7b644 9fec945 4f75d26 ce7b644 ab5688d bd84a02 d2f7d16 bd84a02 4f75d26 194ba08 4f75d26 ce7b644 4f75d26 ce7b644 4f75d26 2b90304 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import transformers
import streamlit as st
from transformers import AutoTokenizer, AutoModelWithLMHead
from transformers import pipeline
#tokenizer = AutoTokenizer.from_pretrained("gpt2-medium")
sentiment_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")
@st.cache
def load_model(model_name):
model = AutoModelWithLMHead.from_pretrained(model_name)
return model
def load_text_gen_model():
generator = pipeline("text-generation", model="gpt2-medium")
return generator
@st.cache
def get_sentiment_model():
sentiment_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")
return sentiment_model
def get_sentiment(text):
input_ids = sentiment_tokenizer .encode(text + '</s>', return_tensors='pt')
output = sentiment_model.generate(input_ids=input_ids,max_length=2)
dec = [sentiment_tokenizer.decode(ids) for ids in output]
label = dec[0]
return label
#@st.cache(allow_output_mutation=True)
def get_summarizer():
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
return summarizer
def get_qa_model():
model_name = "deepset/roberta-base-squad2"
qa_pipeline = = pipeline('question-answering', model=model_name, tokenizer=model_name)
return qa_pipeline
sentiment_model = get_sentiment_model()
summarizer = get_summarizer()
answer_geerator = get_qa_model()
#text_generator = load_text_gen_model()
action = st.sidebar.selectbox("Pick an Action", ["Analyse a Review","Generate an Article","Create an Image"])
if action == "Analyse a Review":
review = st.text_area("Paste the review here..")
if review:
#res = text_generator( prompt, max_length=100, temperature=0.7)
#st.write(res)
sentiment = get_sentiment(review)
st.write(sentiment)
if st.button("Summarize the review"):
summary = summarizer(review, max_length=130, min_length=30, do_sample=False)
st.write(summary)
if st.button("Find the key topic"):
QA_input = {'question': 'what is the review about?',
'context': review}
answer = answer_geerator (QA_input)
st.write(answer)
|