ml-playground / app.py
Sasidhar's picture
Update app.py
22f90c0
raw
history blame
2.18 kB
import transformers
import streamlit as st
from transformers import AutoTokenizer, AutoModelWithLMHead
from transformers import pipeline
sentiment_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")
def load_text_gen_model():
generator = pipeline("text-generation", model="gpt2-medium")
return generator
@st.cache
def get_sentiment_model():
sentiment_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")
return sentiment_model
def get_summarizer_model():
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
return summarizer
def get_sentiment(text):
input_ids = sentiment_tokenizer .encode(text + '</s>', return_tensors='pt')
output = sentiment_extractor.generate(input_ids=input_ids,max_length=2)
dec = [sentiment_tokenizer.decode(ids) for ids in output]
label = dec[0]
return label
def get_qa_model():
model_name = "deepset/roberta-base-squad2"
qa_pipeline = pipeline('question-answering', model=model_name, tokenizer=model_name)
return qa_pipeline
sentiment_extractor = get_sentiment_model()
summarizer = get_summarizer_model()
answer_generator = get_qa_model()
streamlit = "cool"
theming = "fantastic"
both = "💥"
st.header("Analyze a review..")
#action = st.sidebar.selectbox("Pick an Action", ["Analyse a Review","Generate an Article","Create an Image"])
#if action == "Analyse a Review":
st.subheader("Paste/write a review here")
review = st.text_area("")
if review:
#res = text_generator( prompt, max_length=100, temperature=0.7)
#st.write(res)
if st.button("Get the Sentiment of the Review"):
sentiment = get_sentiment(review)
st.write(sentiment)
if st.button("Summarize the review"):
summary = summarizer(review, max_length=130, min_length=30, do_sample=False)
st.write(summary)
if st.button("Find the key topic"):
QA_input = {'question': 'what is the review about?',
'context': review}
answer = answer_generator(QA_input)
st.write(answer)