Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
import plotly.express as px
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
|
7 |
+
st.set_page_config(layout="wide")
|
8 |
+
|
9 |
+
@st.cache(allow_output_mutation = True)
|
10 |
+
def get_classifier_model():
|
11 |
+
return pipeline("zero-shot-classification", model="models/bart-large-mnli")
|
12 |
+
#return pipeline("zero-shot-classification",model="sentence-transformers/paraphrase-MiniLM-L6-v2")
|
13 |
+
|
14 |
+
|
15 |
+
#st.sidebar.image("Suncorp-Bank-logo.png",width=255)
|
16 |
+
|
17 |
+
st.image("Suncorp-Bank-logo.png",width=255)
|
18 |
+
|
19 |
+
st.title("Detecting Barriers from Conversations")
|
20 |
+
st.markdown("***")
|
21 |
+
|
22 |
+
text = st.text_area(label="Enter text to classify")
|
23 |
+
st.markdown("***")
|
24 |
+
|
25 |
+
col1, col2, col3 = st.columns((1,1,1))
|
26 |
+
col1.header("Select Sentiments")
|
27 |
+
sentiments = col1.multiselect("",["Happy","Sad","Anxious","Depressed","Empathetic"],["Happy","Sad","Anxious","Depressed","Empathetic"])
|
28 |
+
col2.header("Select Entities")
|
29 |
+
entities = col2.multiselect("",["Employee","Doctor","Family","Friends"],
|
30 |
+
["Employee","Doctor","Family","Friends"])
|
31 |
+
|
32 |
+
|
33 |
+
col3.header("Select Reasons")
|
34 |
+
|
35 |
+
reasons = col3.multiselect("",["Bullying","Alchohol","Abuse","Domestic_Violence",'Chronic_Pain','Driving','Hobbies','Treatment'],
|
36 |
+
["Bullying","Alchohol","Abuse","Domestic_Violence",'Chronic_Pain','Driving','Hobbies','Treatment'])
|
37 |
+
|
38 |
+
is_multi_class = st.checkbox("Can have more than one classes",value=True)
|
39 |
+
|
40 |
+
st.markdown("***")
|
41 |
+
|
42 |
+
classify_button_clicked = st.button("Classify")
|
43 |
+
|
44 |
+
def get_classification(candidate_labels):
|
45 |
+
classification_output = classifier(sequence_to_classify, candidate_labels, multi_class=is_multi_class)
|
46 |
+
data = {'Class': classification_output['labels'], 'Scores': classification_output['scores']}
|
47 |
+
df = pd.DataFrame(data)
|
48 |
+
df = df.sort_values(by='Scores', ascending=False)
|
49 |
+
fig = px.bar(df, x='Scores', y='Class', orientation='h', width=800, height=800)
|
50 |
+
fig.update_layout(
|
51 |
+
yaxis=dict(
|
52 |
+
autorange='reversed'
|
53 |
+
)
|
54 |
+
)
|
55 |
+
return fig
|
56 |
+
|
57 |
+
if classify_button_clicked:
|
58 |
+
if text:
|
59 |
+
st.markdown("***")
|
60 |
+
with st.spinner(" Please wait while the text is being classified.."):
|
61 |
+
classifier = get_classifier_model()
|
62 |
+
sequence_to_classify = text
|
63 |
+
# candidate_labels = sentiments + entities + reasons
|
64 |
+
|
65 |
+
if sentiments:
|
66 |
+
#print(classification_output)
|
67 |
+
fig = get_classification(sentiments)
|
68 |
+
# col5, col6= st.columns((1, 1))
|
69 |
+
col1.write(fig)
|
70 |
+
|
71 |
+
if entities:
|
72 |
+
#print(classification_output)
|
73 |
+
fig = get_classification(entities)
|
74 |
+
# col7, col8= st.columns((1, 1))
|
75 |
+
col2.write(fig)
|
76 |
+
|
77 |
+
if reasons:
|
78 |
+
#print(classification_output)
|
79 |
+
fig = get_classification(reasons)
|
80 |
+
# col7, col8= st.columns((1, 1))
|
81 |
+
col3.write(fig)
|