Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import faiss
|
2 |
+
import pickle
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.chains import LLMChain
|
8 |
+
from langchain.chat_models import ChatOpenAI
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
|
11 |
+
# Load OpenAI API key (Replace with Hugging Face Secrets later)
|
12 |
+
openai_api_key = "your_openai_api_key"
|
13 |
+
|
14 |
+
# Load FAISS vectorstore
|
15 |
+
load_path = "faiss_index"
|
16 |
+
vectorstore = FAISS.load_local(
|
17 |
+
load_path, OpenAIEmbeddings(openai_api_key=openai_api_key), allow_dangerous_deserialization=True
|
18 |
+
)
|
19 |
+
|
20 |
+
# Define prompt template
|
21 |
+
prompt_template = """
|
22 |
+
You are an expert assistant. Answer based on the given context (text, tables, images).
|
23 |
+
Context: {context}
|
24 |
+
|
25 |
+
Question: {question}
|
26 |
+
|
27 |
+
If you cannot find relevant data, reply with: "Sorry, I don't have enough information."
|
28 |
+
Answer:
|
29 |
+
"""
|
30 |
+
|
31 |
+
qa_chain = LLMChain(
|
32 |
+
llm=ChatOpenAI(model="gpt-4", openai_api_key=openai_api_key, max_tokens=1024),
|
33 |
+
prompt=PromptTemplate.from_template(prompt_template)
|
34 |
+
)
|
35 |
+
|
36 |
+
# Function to handle queries
|
37 |
+
def answer(query):
|
38 |
+
relevant_docs = vectorstore.similarity_search(query)
|
39 |
+
context = ""
|
40 |
+
relevant_images = []
|
41 |
+
|
42 |
+
for doc in relevant_docs:
|
43 |
+
if doc.metadata['type'] == 'text':
|
44 |
+
context += '[text] ' + doc.metadata['original_content'] + "\n"
|
45 |
+
elif doc.metadata['type'] == 'table':
|
46 |
+
context += '[table] ' + doc.metadata['original_content'] + "\n"
|
47 |
+
elif doc.metadata['type'] == 'image':
|
48 |
+
context += '[image] ' + doc.page_content + "\n"
|
49 |
+
relevant_images.append(doc.metadata['original_content']) # Store image file paths
|
50 |
+
|
51 |
+
response = qa_chain.run({'context': context, 'question': query})
|
52 |
+
|
53 |
+
# Load images (if available)
|
54 |
+
images = []
|
55 |
+
for img_path in relevant_images:
|
56 |
+
try:
|
57 |
+
images.append(Image.open(img_path))
|
58 |
+
except:
|
59 |
+
pass # Ignore errors
|
60 |
+
|
61 |
+
return response, images
|
62 |
+
|
63 |
+
# Gradio UI
|
64 |
+
def chatbot_interface(question):
|
65 |
+
response, images = answer(question)
|
66 |
+
return response, images if images else None
|
67 |
+
|
68 |
+
iface = gr.Interface(
|
69 |
+
fn=chatbot_interface,
|
70 |
+
inputs="text",
|
71 |
+
outputs=["text", "gallery"],
|
72 |
+
title="Text & Image Retrieval Chatbot",
|
73 |
+
description="Ask a question and get an answer with relevant images if available.",
|
74 |
+
)
|
75 |
+
|
76 |
+
iface.launch()
|