Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,21 @@
|
|
|
|
|
|
1 |
from langchain.chat_models import ChatOpenAI
|
2 |
from langchain.embeddings import OpenAIEmbeddings
|
3 |
from langchain.chains import LLMChain
|
4 |
from langchain.prompts import PromptTemplate
|
5 |
-
from langchain.schema.messages import HumanMessage, SystemMessage
|
6 |
-
from langchain.schema.document import Document
|
7 |
from langchain.vectorstores import FAISS
|
8 |
-
from langchain.retrievers.multi_vector import MultiVectorRetriever
|
9 |
-
import os
|
10 |
-
import uuid
|
11 |
-
import base64
|
12 |
-
from fastapi import FastAPI, Request, Form, Response, File, UploadFile
|
13 |
-
from fastapi.responses import HTMLResponse, JSONResponse
|
14 |
-
from fastapi.templating import Jinja2Templates
|
15 |
-
from fastapi.encoders import jsonable_encoder
|
16 |
-
from fastapi.middleware.cors import CORSMiddleware
|
17 |
-
import json
|
18 |
from dotenv import load_dotenv
|
|
|
|
|
19 |
load_dotenv()
|
20 |
|
21 |
app = FastAPI()
|
22 |
-
templates = Jinja2Templates(directory="templates")
|
23 |
-
|
24 |
-
# Configure CORS
|
25 |
-
app.add_middleware(
|
26 |
-
CORSMiddleware,
|
27 |
-
allow_origins=["*"],
|
28 |
-
allow_credentials=True,
|
29 |
-
allow_methods=["*"],
|
30 |
-
allow_headers=["*"],
|
31 |
-
)
|
32 |
-
|
33 |
-
# Securely retrieve the OpenAI API key
|
34 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
35 |
-
import os
|
36 |
-
|
37 |
-
# Securely retrieve the OpenAI API key from the environment variable
|
38 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
39 |
|
40 |
-
if not openai_api_key:
|
41 |
-
raise ValueError("Missing OpenAI API key. Set OPENAI_API_KEY in your environment variables.")
|
42 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
43 |
-
if openai_api_key:
|
44 |
-
print("API Key loaded successfully!")
|
45 |
-
else:
|
46 |
-
print("API Key not found.")
|
47 |
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
48 |
-
|
49 |
-
|
50 |
db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
51 |
|
52 |
-
# Define the prompt template
|
53 |
prompt_template = """
|
54 |
You are an expert in skin cancer, etc.
|
55 |
Answer the question based only on the following context, which can include text, images, and tables:
|
@@ -63,15 +29,10 @@ Just return the helpful answer in as much detail as possible.
|
|
63 |
Answer:
|
64 |
"""
|
65 |
|
66 |
-
qa_chain = LLMChain(llm=ChatOpenAI(model="gpt-4", openai_api_key
|
67 |
prompt=PromptTemplate.from_template(prompt_template))
|
68 |
|
69 |
-
|
70 |
-
async def index(request: Request):
|
71 |
-
return templates.TemplateResponse("index.html", {"request": request})
|
72 |
-
|
73 |
-
@app.post("/get_answer")
|
74 |
-
async def get_answer(question: str = Form(...)):
|
75 |
relevant_docs = db.similarity_search(question)
|
76 |
context = ""
|
77 |
relevant_images = []
|
@@ -84,4 +45,10 @@ async def get_answer(question: str = Form(...)):
|
|
84 |
context += '[image]' + d.page_content
|
85 |
relevant_images.append(d.metadata['original_content'])
|
86 |
result = qa_chain.run({'context': context, 'question': question})
|
87 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from fastapi import FastAPI
|
3 |
from langchain.chat_models import ChatOpenAI
|
4 |
from langchain.embeddings import OpenAIEmbeddings
|
5 |
from langchain.chains import LLMChain
|
6 |
from langchain.prompts import PromptTemplate
|
|
|
|
|
7 |
from langchain.vectorstores import FAISS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from dotenv import load_dotenv
|
9 |
+
import os
|
10 |
+
|
11 |
load_dotenv()
|
12 |
|
13 |
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
|
|
|
|
17 |
db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
18 |
|
|
|
19 |
prompt_template = """
|
20 |
You are an expert in skin cancer, etc.
|
21 |
Answer the question based only on the following context, which can include text, images, and tables:
|
|
|
29 |
Answer:
|
30 |
"""
|
31 |
|
32 |
+
qa_chain = LLMChain(llm=ChatOpenAI(model="gpt-4", openai_api_key=openai_api_key, max_tokens=1024),
|
33 |
prompt=PromptTemplate.from_template(prompt_template))
|
34 |
|
35 |
+
def get_answer(question: str):
|
|
|
|
|
|
|
|
|
|
|
36 |
relevant_docs = db.similarity_search(question)
|
37 |
context = ""
|
38 |
relevant_images = []
|
|
|
45 |
context += '[image]' + d.page_content
|
46 |
relevant_images.append(d.metadata['original_content'])
|
47 |
result = qa_chain.run({'context': context, 'question': question})
|
48 |
+
return {"relevant_images": relevant_images[0], "result": result}
|
49 |
+
|
50 |
+
iface = gr.Interface(fn=get_answer, inputs="text", outputs="json")
|
51 |
+
|
52 |
+
# Run the Gradio interface inside FastAPI
|
53 |
+
if __name__ == "__main__":
|
54 |
+
iface.launch()
|