Spaces:
Sleeping
Sleeping
File size: 3,722 Bytes
1a0448c 3c6b6f2 d329f7c 3c6b6f2 1a0448c a557725 1a0448c a348a05 a557725 1a0448c 3c6b6f2 1a0448c 3c6b6f2 1a0448c 3c6b6f2 1a0448c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import numpy as np
import torch
import streamlit as st
from transformers import BertTokenizer
from transformers import BertForSequenceClassification
from sklearn.preprocessing import LabelEncoder
from keras.utils import pad_sequences
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
st.markdown("### Hello, world!")
st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
# ^-- можно показывать пользователю текст, картинки, ограниченное подмножество html - всё как в jupyter
text = st.text_area("TEXT HERE")
# ^-- показать текстовое поле. В поле text лежит строка, которая находится там в данный момент
if torch.cuda.is_available():
# Tell PyTorch to use the GPU.
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
# If not...
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
# Set the maximum sequence length.
# I've chosen 64 somewhat arbitrarily. It's slightly larger than the
# maximum training sentence length of 47...
MAX_LEN = 64
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
test_input_ids = []
encoded_sent = tokenizer.encode(
text, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
# This function also supports truncation and conversion
# to pytorch tensors, but we need to do padding, so we
# can't use these features :( .
#max_length = 128, # Truncate all sentences.
#return_tensors = 'pt', # Return pytorch tensors.
)
#tkns = tokenized_sub_sentence
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(str(text)))#le.convert_tokens_to_ids(tkns)
segments_ids = [0] * len(indexed_tokens)
tokens_tensor = torch.tensor([indexed_tokens])#.to(device)
segments_tensors = torch.tensor([segments_ids])#.to(device)
model = BertForSequenceClassification.from_pretrained(
"bert-base-uncased", # Use the 12-layer BERT model, with an uncased vocab.
num_labels = 44, # The number of output labels--2 for binary classification.
# You can increase this for multi-class tasks.
output_attentions = False, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
)
model.load_state_dict(torch.load("model_last_version.pt", map_location=torch.device('cpu')))
# model.to(device)
model.eval()
with torch.no_grad():
logit = model(tokens_tensor,
token_type_ids=None,
attention_mask=segments_tensors)
logit_new = logit[0].argmax(2).detach().cpu().numpy().tolist()
prediction = logit_new[0]
# Creating a instance of label Encoder.
le = LabelEncoder()
# print("Predict: ", le.inverse_transform(flat_predictions))
# from transformers import pipeline
# pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl")
raw_predictions = le.inverse_transform(prediction)#pipe(text)
# тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost
st.markdown(f"{raw_predictions}")
# выводим результаты модели в текстовое поле, на потеху пользователю |