Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,9 +28,54 @@ logits = model(input_ids, attention_mask)[0]
|
|
28 |
probs = torch.softmax(logits, dim=1)
|
29 |
|
30 |
predicted_category = torch.argmax(probs).item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# from transformers import pipeline
|
32 |
# pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl")
|
33 |
-
raw_predictions = predicted_category#le.inverse_transform(prediction)#pipe(text)
|
34 |
# тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost
|
35 |
|
36 |
st.markdown(f"{raw_predictions}")
|
|
|
28 |
probs = torch.softmax(logits, dim=1)
|
29 |
|
30 |
predicted_category = torch.argmax(probs).item()
|
31 |
+
|
32 |
+
tags_names = ['acc-phys',
|
33 |
+
'adap-org',
|
34 |
+
"adap-org'",
|
35 |
+
'alg-geom',
|
36 |
+
'astro-ph',
|
37 |
+
"astro-ph'",
|
38 |
+
'chao-dyn',
|
39 |
+
'chem-ph',
|
40 |
+
'cmp-lg',
|
41 |
+
"cmp-lg'",
|
42 |
+
'comp-gas',
|
43 |
+
'cond-mat',
|
44 |
+
"cond-mat'",
|
45 |
+
'cs',
|
46 |
+
'dg-ga',
|
47 |
+
'econ',
|
48 |
+
'eess',
|
49 |
+
'funct-an',
|
50 |
+
'gr-qc',
|
51 |
+
"gr-qc'",
|
52 |
+
'hep-ex',
|
53 |
+
"hep-ex'",
|
54 |
+
'hep-lat',
|
55 |
+
"hep-lat'",
|
56 |
+
'hep-ph',
|
57 |
+
"hep-ph'",
|
58 |
+
'hep-th',
|
59 |
+
"hep-th'",
|
60 |
+
'math',
|
61 |
+
'math-ph',
|
62 |
+
'mtrl-th',
|
63 |
+
'nlin',
|
64 |
+
'nucl-ex',
|
65 |
+
'nucl-th',
|
66 |
+
"nucl-th'",
|
67 |
+
'patt-sol',
|
68 |
+
'physics',
|
69 |
+
'q-alg',
|
70 |
+
'q-bio',
|
71 |
+
'q-fin',
|
72 |
+
'quant-ph',
|
73 |
+
"quant-ph'",
|
74 |
+
'solv-int',
|
75 |
+
'stat']
|
76 |
# from transformers import pipeline
|
77 |
# pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl")
|
78 |
+
raw_predictions = tags_names[predicted_category]#le.inverse_transform(prediction)#pipe(text)
|
79 |
# тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost
|
80 |
|
81 |
st.markdown(f"{raw_predictions}")
|