Spaces:
Sleeping
Sleeping
File size: 6,368 Bytes
659dfad 942d582 1b7a9ae 659dfad 1b7a9ae 659dfad 1b7a9ae 659dfad 1b7a9ae da0865c 1b7a9ae b4cda43 1b7a9ae da0865c 1b7a9ae b4cda43 da0865c 1b7a9ae da0865c 1b7a9ae b4cda43 1b7a9ae da0865c 1b7a9ae da0865c b4cda43 da0865c b4cda43 1b7a9ae b4cda43 1b7a9ae da0865c 1b7a9ae da0865c b4cda43 1b7a9ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import streamlit as st
import pandas as pd
import pickle
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
# Load model and encoder
@st.cache_resource
def load_model_and_encoder():
with open('best_rf_pipeline.pkl', 'rb') as f:
model = pickle.load(f)
with open('label_encoder.pkl', 'rb') as f:
encoder = pickle.load(f)
return model, encoder
# Load player dataset
@st.cache_data
def load_data():
return pd.read_csv('Reduced_final_teams.csv')
# Match player name exactly (case-insensitive)
def get_matching_player(name_from_file, player_list):
name_lower = name_from_file.lower()
for player in player_list:
if player.lower() == name_lower:
return player
return None
# Horizontal bar chart
def plot_horizontal_bar(df, player1, player2):
st.subheader("π Stat Comparison - Horizontal Bar Chart")
num_cols = df.select_dtypes(include='number').columns
df_num = df[num_cols].T
df_num.columns = [player1, player2]
df_num = df_num.fillna(0)
df_num = df_num.sort_values(by=player1, ascending=False).head(15)
fig, ax = plt.subplots(figsize=(10, 7))
df_num.plot(kind='barh', ax=ax)
ax.set_title(f"{player1} vs {player2} - Key Stats")
ax.set_xlabel("Value")
ax.set_ylabel("Metric")
ax.legend(loc="lower right")
st.pyplot(fig)
# Pie chart with NaN-safe checks
def plot_pie_charts(player1_data, player2_data, player1, player2):
st.subheader("π₯§ Batting vs Bowling Contribution")
col1, col2 = st.columns(2)
for col, player_data, player_name in zip([col1, col2], [player1_data, player2_data], [player1, player2]):
batting_total = sum([
player_data.get('Runs_ODI', 0) or 0,
player_data.get('Runs_T20', 0) or 0,
player_data.get('Runs_Test', 0) or 0
])
bowling_total = sum([
player_data.get('Wickets_ODI', 0) or 0,
player_data.get('Wickets_T20', 0) or 0,
player_data.get('Wickets_Test', 0) or 0
])
total = batting_total + bowling_total
if total == 0 or np.isnan(total):
col.warning(f"β οΈ Not enough data to plot pie chart for {player_name}")
continue
labels = ['Batting', 'Bowling']
sizes = [batting_total, bowling_total]
fig, ax = plt.subplots()
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=['#4CAF50', '#2196F3'])
ax.axis('equal')
col.pyplot(fig)
col.caption(f"{player_name}'s Batting vs Bowling")
# Bowling metrics bar chart
def plot_bowling_comparison(df, player1, player2):
st.subheader("π― Bowling Metrics Comparison")
bowling_cols = [col for col in df.columns if 'Wickets' in col or 'Economy' in col or 'Bowling_Average' in col]
df_bowling = df[bowling_cols].T
df_bowling.columns = [player1, player2]
df_bowling = df_bowling.fillna(0).sort_values(by=player1, ascending=False)
if df_bowling.empty:
st.warning("β οΈ No bowling metrics available for comparison.")
return
fig, ax = plt.subplots(figsize=(10, 6))
df_bowling.plot(kind='bar', ax=ax)
ax.set_title("Bowling Stats")
ax.set_ylabel("Value")
ax.set_xticklabels(df_bowling.index, rotation=45, ha='right')
ax.legend(loc="upper right")
st.pyplot(fig)
# Bowling stats summary per player
def show_bowling_summary(player_data, player_name):
st.subheader(f"π³ Bowling Summary: {player_name}")
col1, col2, col3 = st.columns(3)
col1.metric("Wickets (ODI)", int(player_data.get("Wickets_ODI", 0) or 0))
col2.metric("Wickets (T20)", int(player_data.get("Wickets_T20", 0) or 0))
col3.metric("Wickets (Test)", int(player_data.get("Wickets_Test", 0) or 0))
col4, col5 = st.columns(2)
economy = player_data.get("Economy_ODI", 0)
bowling_avg = player_data.get("Bowling_Average_Test", 0)
col4.metric("Economy (ODI)", f"{economy:.2f}" if pd.notna(economy) else "N/A")
col5.metric("Avg (Test)", f"{bowling_avg:.2f}" if pd.notna(bowling_avg) else "N/A")
# Main app
def main():
st.set_page_config(layout="wide")
st.title("Cricket Player Comparison Tool π")
df = load_data()
model, encoder = load_model_and_encoder()
player_list = df['Player'].tolist()
# Upload images
col1, col2 = st.columns(2)
with col1:
img1 = st.file_uploader("Upload Image for Player 1", type=['png', 'jpg', 'jpeg'], key='img1')
with col2:
img2 = st.file_uploader("Upload Image for Player 2", type=['png', 'jpg', 'jpeg'], key='img2')
if img1 and img2:
name1_raw = img1.name.rsplit('.', 1)[0]
name2_raw = img2.name.rsplit('.', 1)[0]
player1_name = get_matching_player(name1_raw, player_list)
player2_name = get_matching_player(name2_raw, player_list)
if player1_name and player2_name and player1_name != player2_name:
player1_data = df[df['Player'].str.lower() == player1_name.lower()].fillna(0).squeeze()
player2_data = df[df['Player'].str.lower() == player2_name.lower()].fillna(0).squeeze()
st.success(f"Comparing **{player1_name}** vs **{player2_name}**")
col3, col4 = st.columns(2)
with col3:
st.image(img1, caption=player1_name, use_container_width=True)
with col4:
st.image(img2, caption=player2_name, use_container_width=True)
# Full Stats Table
comparison_df = pd.DataFrame([player1_data, player2_data])
comparison_df.set_index('Player', inplace=True)
st.subheader("π Full Stats Table")
st.dataframe(comparison_df.T)
# Stat Summaries
show_bowling_summary(player1_data, player1_name)
show_bowling_summary(player2_data, player2_name)
# Visualizations
plot_horizontal_bar(comparison_df, player1_name, player2_name)
plot_pie_charts(player1_data, player2_data, player1_name, player2_name)
plot_bowling_comparison(comparison_df, player1_name, player2_name)
else:
st.error("β Player names from image files don't match or are the same. Please check file names.")
else:
st.info("πΈ Please upload two player images to continue.")
if __name__ == "__main__":
main()
|