File size: 6,368 Bytes
659dfad
 
942d582
1b7a9ae
 
 
 
 
659dfad
1b7a9ae
 
659dfad
1b7a9ae
659dfad
1b7a9ae
 
 
 
 
 
 
da0865c
1b7a9ae
 
 
 
 
 
 
 
 
 
 
 
 
b4cda43
1b7a9ae
 
 
 
 
 
 
 
 
 
da0865c
1b7a9ae
 
 
 
 
b4cda43
 
 
 
 
 
 
 
 
 
da0865c
 
 
 
 
1b7a9ae
 
 
 
 
 
 
 
 
 
da0865c
1b7a9ae
 
 
 
 
 
b4cda43
1b7a9ae
da0865c
 
 
 
1b7a9ae
 
 
 
 
 
 
 
da0865c
b4cda43
 
 
 
 
 
 
 
da0865c
 
 
 
b4cda43
1b7a9ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4cda43
 
1b7a9ae
 
 
 
 
 
 
 
 
da0865c
1b7a9ae
 
 
 
 
da0865c
b4cda43
 
 
1b7a9ae
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import streamlit as st
import pandas as pd
import pickle
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

# Load model and encoder
@st.cache_resource
def load_model_and_encoder():
    with open('best_rf_pipeline.pkl', 'rb') as f:
        model = pickle.load(f)
    with open('label_encoder.pkl', 'rb') as f:
        encoder = pickle.load(f)
    return model, encoder

# Load player dataset
@st.cache_data
def load_data():
    return pd.read_csv('Reduced_final_teams.csv')

# Match player name exactly (case-insensitive)
def get_matching_player(name_from_file, player_list):
    name_lower = name_from_file.lower()
    for player in player_list:
        if player.lower() == name_lower:
            return player
    return None

# Horizontal bar chart
def plot_horizontal_bar(df, player1, player2):
    st.subheader("πŸ“Š Stat Comparison - Horizontal Bar Chart")
    num_cols = df.select_dtypes(include='number').columns
    df_num = df[num_cols].T
    df_num.columns = [player1, player2]
    df_num = df_num.fillna(0)
    df_num = df_num.sort_values(by=player1, ascending=False).head(15)

    fig, ax = plt.subplots(figsize=(10, 7))
    df_num.plot(kind='barh', ax=ax)
    ax.set_title(f"{player1} vs {player2} - Key Stats")
    ax.set_xlabel("Value")
    ax.set_ylabel("Metric")
    ax.legend(loc="lower right")
    st.pyplot(fig)

# Pie chart with NaN-safe checks
def plot_pie_charts(player1_data, player2_data, player1, player2):
    st.subheader("πŸ₯§ Batting vs Bowling Contribution")
    col1, col2 = st.columns(2)

    for col, player_data, player_name in zip([col1, col2], [player1_data, player2_data], [player1, player2]):
        batting_total = sum([
            player_data.get('Runs_ODI', 0) or 0,
            player_data.get('Runs_T20', 0) or 0,
            player_data.get('Runs_Test', 0) or 0
        ])
        bowling_total = sum([
            player_data.get('Wickets_ODI', 0) or 0,
            player_data.get('Wickets_T20', 0) or 0,
            player_data.get('Wickets_Test', 0) or 0
        ])
        total = batting_total + bowling_total

        if total == 0 or np.isnan(total):
            col.warning(f"⚠️ Not enough data to plot pie chart for {player_name}")
            continue

        labels = ['Batting', 'Bowling']
        sizes = [batting_total, bowling_total]

        fig, ax = plt.subplots()
        ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=['#4CAF50', '#2196F3'])
        ax.axis('equal')
        col.pyplot(fig)
        col.caption(f"{player_name}'s Batting vs Bowling")

# Bowling metrics bar chart
def plot_bowling_comparison(df, player1, player2):
    st.subheader("🎯 Bowling Metrics Comparison")

    bowling_cols = [col for col in df.columns if 'Wickets' in col or 'Economy' in col or 'Bowling_Average' in col]
    df_bowling = df[bowling_cols].T
    df_bowling.columns = [player1, player2]
    df_bowling = df_bowling.fillna(0).sort_values(by=player1, ascending=False)

    if df_bowling.empty:
        st.warning("⚠️ No bowling metrics available for comparison.")
        return

    fig, ax = plt.subplots(figsize=(10, 6))
    df_bowling.plot(kind='bar', ax=ax)
    ax.set_title("Bowling Stats")
    ax.set_ylabel("Value")
    ax.set_xticklabels(df_bowling.index, rotation=45, ha='right')
    ax.legend(loc="upper right")
    st.pyplot(fig)

# Bowling stats summary per player
def show_bowling_summary(player_data, player_name):
    st.subheader(f"🎳 Bowling Summary: {player_name}")
    col1, col2, col3 = st.columns(3)
    col1.metric("Wickets (ODI)", int(player_data.get("Wickets_ODI", 0) or 0))
    col2.metric("Wickets (T20)", int(player_data.get("Wickets_T20", 0) or 0))
    col3.metric("Wickets (Test)", int(player_data.get("Wickets_Test", 0) or 0))

    col4, col5 = st.columns(2)
    economy = player_data.get("Economy_ODI", 0)
    bowling_avg = player_data.get("Bowling_Average_Test", 0)
    col4.metric("Economy (ODI)", f"{economy:.2f}" if pd.notna(economy) else "N/A")
    col5.metric("Avg (Test)", f"{bowling_avg:.2f}" if pd.notna(bowling_avg) else "N/A")

# Main app
def main():
    st.set_page_config(layout="wide")
    st.title("Cricket Player Comparison Tool 🏏")

    df = load_data()
    model, encoder = load_model_and_encoder()
    player_list = df['Player'].tolist()

    # Upload images
    col1, col2 = st.columns(2)
    with col1:
        img1 = st.file_uploader("Upload Image for Player 1", type=['png', 'jpg', 'jpeg'], key='img1')
    with col2:
        img2 = st.file_uploader("Upload Image for Player 2", type=['png', 'jpg', 'jpeg'], key='img2')

    if img1 and img2:
        name1_raw = img1.name.rsplit('.', 1)[0]
        name2_raw = img2.name.rsplit('.', 1)[0]

        player1_name = get_matching_player(name1_raw, player_list)
        player2_name = get_matching_player(name2_raw, player_list)

        if player1_name and player2_name and player1_name != player2_name:
            player1_data = df[df['Player'].str.lower() == player1_name.lower()].fillna(0).squeeze()
            player2_data = df[df['Player'].str.lower() == player2_name.lower()].fillna(0).squeeze()

            st.success(f"Comparing **{player1_name}** vs **{player2_name}**")

            col3, col4 = st.columns(2)
            with col3:
                st.image(img1, caption=player1_name, use_container_width=True)
            with col4:
                st.image(img2, caption=player2_name, use_container_width=True)

            # Full Stats Table
            comparison_df = pd.DataFrame([player1_data, player2_data])
            comparison_df.set_index('Player', inplace=True)
            st.subheader("πŸ“‹ Full Stats Table")
            st.dataframe(comparison_df.T)

            # Stat Summaries
            show_bowling_summary(player1_data, player1_name)
            show_bowling_summary(player2_data, player2_name)

            # Visualizations
            plot_horizontal_bar(comparison_df, player1_name, player2_name)
            plot_pie_charts(player1_data, player2_data, player1_name, player2_name)
            plot_bowling_comparison(comparison_df, player1_name, player2_name)

        else:
            st.error("❌ Player names from image files don't match or are the same. Please check file names.")
    else:
        st.info("πŸ“Έ Please upload two player images to continue.")

if __name__ == "__main__":
    main()