File size: 4,967 Bytes
659dfad
 
 
 
 
4ce3f06
659dfad
 
 
 
 
 
 
 
 
 
 
 
 
1df9a8f
659dfad
1df9a8f
4ce3f06
 
 
 
 
 
 
1df9a8f
4ce3f06
 
 
 
 
1df9a8f
4ce3f06
 
 
 
 
 
 
 
 
1df9a8f
 
 
 
4ce3f06
1df9a8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ce3f06
 
1df9a8f
659dfad
4ce3f06
659dfad
 
 
 
4ce3f06
659dfad
4ce3f06
659dfad
 
 
 
 
 
4ce3f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1df9a8f
4ce3f06
 
1df9a8f
4ce3f06
 
1df9a8f
4ce3f06
1df9a8f
 
4ce3f06
 
1df9a8f
4ce3f06
1df9a8f
659dfad
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import streamlit as st
import pandas as pd
import pickle
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

# Load model and encoder
@st.cache_resource
def load_model_and_encoder():
    with open('best_rf_pipeline.pkl', 'rb') as f:
        model = pickle.load(f)
    with open('label_encoder.pkl', 'rb') as f:
        encoder = pickle.load(f)
    return model, encoder

# Load player dataset
@st.cache_data
def load_data():
    return pd.read_csv('Reduced_final_teams.csv')

# Fuzzy match player name
def get_matching_player(name_from_file, player_list):
    name_lower = name_from_file.lower()
    for player in player_list:
        if player.lower() == name_lower:
            return player
    return None

# Horizontal bar chart
def plot_horizontal_bar(df, player1, player2):
    st.subheader("πŸ“Š Stat Comparison - Horizontal Bar Chart")
    num_cols = df.select_dtypes(include='number').columns
    df_num = df[num_cols].T
    df_num.columns = [player1, player2]
    df_num = df_num.sort_values(by=player1, ascending=False).head(15)

    fig, ax = plt.subplots(figsize=(10, 7))
    df_num.plot(kind='barh', ax=ax)
    ax.set_title(f"{player1} vs {player2} - Key Stats")
    ax.set_xlabel("Value")
    ax.set_ylabel("Metric")
    ax.legend(loc="lower right")
    st.pyplot(fig)

# Pie chart comparison
def plot_pie_charts(player1_data, player2_data, player1, player2):
    st.subheader("πŸ₯§ Batting vs Bowling Contribution")
    col1, col2 = st.columns(2)

    for col, player_data, player_name in zip([col1, col2], [player1_data, player2_data], [player1, player2]):
        batting_total = player_data.get('Runs_ODI', 0) + player_data.get('Runs_T20', 0) + player_data.get('Runs_Test', 0)
        bowling_total = player_data.get('Wickets_ODI', 0) + player_data.get('Wickets_T20', 0) + player_data.get('Wickets_Test', 0)

        labels = ['Batting', 'Bowling']
        sizes = [batting_total, bowling_total]

        fig, ax = plt.subplots()
        ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=['#4CAF50', '#2196F3'])
        ax.axis('equal')
        col.pyplot(fig)
        col.caption(f"{player_name}'s Batting vs Bowling")

# Bowling metric bar chart
def plot_bowling_comparison(df, player1, player2):
    st.subheader("🎯 Bowling Metrics Comparison")

    bowling_cols = [col for col in df.columns if 'Wickets' in col or 'Economy' in col or 'Bowling_Average' in col]
    df_bowling = df[bowling_cols].T
    df_bowling.columns = [player1, player2]
    df_bowling = df_bowling.dropna().sort_values(by=player1, ascending=False)

    fig, ax = plt.subplots(figsize=(10, 6))
    df_bowling.plot(kind='bar', ax=ax)
    ax.set_title("Bowling Stats")
    ax.set_ylabel("Value")
    ax.set_xticklabels(df_bowling.index, rotation=45, ha='right')
    ax.legend(loc="upper right")
    st.pyplot(fig)

# Main app
def main():
    st.set_page_config(layout="wide")
    st.title("Cricket Player Comparison Tool 🏏")

    df = load_data()
    model, encoder = load_model_and_encoder()
    player_list = df['Player'].tolist()

    # Upload images
    col1, col2 = st.columns(2)
    with col1:
        img1 = st.file_uploader("Upload Image for Player 1", type=['png', 'jpg', 'jpeg'], key='img1')
    with col2:
        img2 = st.file_uploader("Upload Image for Player 2", type=['png', 'jpg', 'jpeg'], key='img2')

    if img1 and img2:
        name1_raw = img1.name.rsplit('.', 1)[0]
        name2_raw = img2.name.rsplit('.', 1)[0]

        player1_name = get_matching_player(name1_raw, player_list)
        player2_name = get_matching_player(name2_raw, player_list)

        if player1_name and player2_name and player1_name != player2_name:
            player1_data = df[df['Player'].str.lower() == player1_name.lower()].squeeze()
            player2_data = df[df['Player'].str.lower() == player2_name.lower()].squeeze()

            st.success(f"Comparing **{player1_name}** vs **{player2_name}**")

            col3, col4 = st.columns(2)
            with col3:
                st.image(img1, caption=player1_name, use_container_width=True)
            with col4:
                st.image(img2, caption=player2_name, use_container_width=True)

            # Display comparison table
            comparison_df = pd.DataFrame([player1_data, player2_data])
            comparison_df.set_index('Player', inplace=True)
            st.subheader("πŸ“‹ Full Stats Table")
            st.dataframe(comparison_df.T)

            # Visualizations
            plot_horizontal_bar(comparison_df, player1_name, player2_name)
            plot_pie_charts(player1_data, player2_data, player1_name, player2_name)
            plot_bowling_comparison(comparison_df, player1_name, player2_name)

        else:
            st.error("❌ Player names from image files don't match or are the same. Please check file names.")
    else:
        st.info("πŸ“Έ Please upload two player images to continue.")

if __name__ == "__main__":
    main()