File size: 3,385 Bytes
fcb92fa
 
 
 
 
32331b8
8380a1e
32331b8
 
 
fcb92fa
32331b8
fcb92fa
 
 
 
 
 
 
32331b8
fcb92fa
 
 
e8a947e
fcb92fa
 
 
 
 
 
 
32331b8
fcb92fa
32331b8
8380a1e
32331b8
fcb92fa
 
 
 
 
 
 
 
 
 
32331b8
 
 
fcb92fa
 
e8a947e
 
 
 
 
 
 
 
9e50fe1
 
 
 
 
 
 
 
32331b8
 
 
9e50fe1
 
 
 
32331b8
 
 
 
9e50fe1
fcb92fa
e8a947e
32331b8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Set page configuration
st.set_page_config(page_title="Cricket Legends: Career Insights", layout="wide")
# App Title
st.title("🏏 Cricket Legends: Career Insights & Visualizations")

# Load data
file_path = "Final.csv"  # Ensure this file exists in your working directory
df = pd.read_csv(file_path)

# Enter Player Name
player_input = st.text_input("Enter Player Name:")

if player_input:
    selected_player = player_input.strip()
    
    if selected_player in df["Player"].values:
        player_data = df[df["Player"] == selected_player].iloc[0]

         # Pie Chart - Matches Played Across Formats
        matches = [
            player_data["Matches_Test"],
            player_data["Matches_ODI"],
            player_data["Matches_T20"],
            player_data["Matches_IPL"]
        ]
        labels = ["Test", "ODI", "T20", "IPL"]
        
        fig, ax = plt.subplots()
        ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90, 
               colors=["#87CEEB", "#90EE90", "#FFA07A", "#9370DB"])
        ax.set_title(f"Matches Played by {selected_player}", fontsize=14)
        st.pyplot(fig)

        # Bar Chart - Runs Scored in Different Formats
        batting_runs = [
            player_data["batting_Runs_Test"],
            player_data["batting_Runs_ODI"],
            player_data["batting_Runs_T20"],
            player_data["batting_Runs_IPL"]
        ]
        fig, ax = plt.subplots()
        ax.bar(labels, batting_runs, color=["#FFD700", "#008000", "#1E90FF", "#FF4500"])
        ax.set_ylabel("Runs Scored", fontsize=12)
        ax.set_title(f"Runs Scored by {selected_player}", fontsize=14)
        st.pyplot(fig)

        # Scatter Plot - Matches vs Runs (ODIs)
        fig, ax = plt.subplots()
        sns.scatterplot(x=df["Matches_ODI"], y=df["batting_Runs_ODI"], ax=ax, color="#4682B4", edgecolor='black')
        ax.set_xlabel("Matches Played", fontsize=12)
        ax.set_ylabel("Runs Scored", fontsize=12)
        ax.set_title("Matches vs Runs in ODIs (All Players)", fontsize=14)
        st.pyplot(fig)

        # Line Chart - Batting Average Over Formats
        batting_average = [
            player_data["batting_Runs_Test"] / max(1, player_data["batting_Innings_Test"]),
            player_data["batting_Runs_ODI"] / max(1, player_data["batting_Innings_ODI"]),
            player_data["batting_Runs_T20"] / max(1, player_data["batting_Innings_T20"]),
            player_data["batting_Runs_IPL"] / max(1, player_data["batting_Innings_IPL"])
        ]
        fig, ax = plt.subplots()
        ax.plot(labels, batting_average, marker='o', linestyle='-', color='#FFA500', linewidth=2)
        ax.set_ylabel("Batting Average", fontsize=12)
        ax.set_title(f"Batting Average of {selected_player}", fontsize=14)
        st.pyplot(fig)

        # Histogram - Distribution of Runs Scored by All Players in ODIs
        fig, ax = plt.subplots()
        sns.histplot(df["batting_Runs_ODI"], bins=20, kde=True, color='#3CB371', ax=ax)
        ax.set_xlabel("Runs Scored", fontsize=12)
        ax.set_ylabel("Frequency", fontsize=12)
        ax.set_title("Distribution of Runs Scored in ODIs (All Players)", fontsize=14)
        st.pyplot(fig)


    else:
        st.error("🚨 Player not found! Please enter a valid player name.")