Spaces:
Sleeping
Sleeping
File size: 2,961 Bytes
fcb92fa f68d362 fcb92fa 9e50fe1 fcb92fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Load data
file_path = "Final_players.csv"
df = pd.read_csv(file_path)
st.title("South Africa Cricket Players - Career Visualizations")
# Enter Player Name
player_input = st.text_input("Enter Player Name:")
if player_input:
selected_player = player_input.strip()
if selected_player in df["Player"].values:
player_data = df[df["Player"] == selected_player].iloc[0]
# Pie Chart - Matches Played Across Formats
matches = [
player_data["Matches_Test"],
player_data["Matches_ODI"],
player_data["Matches_T20"],
player_data["Matches_IPL"]
]
labels = ["Test", "ODI", "T20", "IPL"]
fig, ax = plt.subplots()
ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90, colors=["blue", "green", "red", "purple"])
ax.set_title(f"Matches Played by {selected_player}")
st.pyplot(fig)
# Bar Chart - Runs Scored in Different Formats
batting_runs = [
player_data["batting_Runs_Test"],
player_data["batting_Runs_ODI"],
player_data["batting_Runs_T20"],
player_data["batting_Runs_IPL"]
]
fig, ax = plt.subplots()
ax.bar(labels, batting_runs, color=["blue", "green", "red", "purple"])
ax.set_ylabel("Runs Scored")
ax.set_title(f"Runs Scored by {selected_player}")
st.pyplot(fig)
# Scatter Plot - Matches vs Runs
fig, ax = plt.subplots()
sns.scatterplot(x=df["Matches_ODI"], y=df["batting_Runs_ODI"], ax=ax)
ax.set_xlabel("Matches Played")
ax.set_ylabel("Runs Scored")
ax.set_title("Matches vs Runs in ODIs (All Players)")
st.pyplot(fig)
# Line Chart - Batting Average Over Formats
batting_average = [
player_data["batting_Runs_Test"] / max(1, player_data["batting_Innings_Test"]),
player_data["batting_Runs_ODI"] / max(1, player_data["batting_Innings_ODI"]),
player_data["batting_Runs_T20"] / max(1, player_data["batting_Innings_T20"]),
player_data["batting_Runs_IPL"] / max(1, player_data["batting_Innings_IPL"])
]
fig, ax = plt.subplots()
ax.plot(labels, batting_average, marker='o', linestyle='-', color='orange')
ax.set_ylabel("Batting Average")
ax.set_title(f"Batting Average of {selected_player}")
st.pyplot(fig)
# Histogram - Distribution of Runs Scored by All Players in ODIs
fig, ax = plt.subplots()
sns.histplot(df["batting_Runs_ODI"], bins=20, kde=True, color='green', ax=ax)
ax.set_xlabel("Runs Scored")
ax.set_ylabel("Frequency")
ax.set_title("Distribution of Runs Scored in ODIs (All Players)")
st.pyplot(fig)
else:
st.error("Player not found! Please enter a valid player name.")
|