Cric_Metrics / pages /1player_information.py
Sathwikchowdary's picture
Update pages/1player_information.py
fcb92fa verified
raw
history blame
1.97 kB
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Load data
file_path = "South_Africa_Final2.csv"
df = pd.read_csv(file_path)
st.title("South Africa Cricket Players - Career Visualizations")
# Enter Player Name
player_input = st.text_input("Enter Player Name:")
if player_input:
selected_player = player_input.strip()
if selected_player in df["Player"].values:
player_data = df[df["Player"] == selected_player].iloc[0]
# Pie Chart - Matches Played Across Formats
matches = [
player_data["Matches_Test"],
player_data["Matches_ODI"],
player_data["Matches_T20"],
player_data["Matches_IPL"]
]
labels = ["Test", "ODI", "T20", "IPL"]
fig, ax = plt.subplots()
ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90, colors=["blue", "green", "red", "purple"])
ax.set_title(f"Matches Played by {selected_player}")
st.pyplot(fig)
# Bar Chart - Runs Scored in Different Formats
batting_runs = [
player_data["batting_Runs_Test"],
player_data["batting_Runs_ODI"],
player_data["batting_Runs_T20"],
player_data["batting_Runs_IPL"]
]
fig, ax = plt.subplots()
ax.bar(labels, batting_runs, color=["blue", "green", "red", "purple"])
ax.set_ylabel("Runs Scored")
ax.set_title(f"Runs Scored by {selected_player}")
st.pyplot(fig)
# Scatter Plot - Matches vs Runs
fig, ax = plt.subplots()
sns.scatterplot(x=df["Matches_ODI"], y=df["batting_Runs_ODI"], ax=ax)
ax.set_xlabel("Matches Played")
ax.set_ylabel("Runs Scored")
ax.set_title("Matches vs Runs in ODIs (All Players)")
st.pyplot(fig)
else:
st.error("Player not found! Please enter a valid player name.")
st.write("Enter a player's name to explore their statistics!")