Spaces:
Sleeping
Sleeping
Update pages/1player_information.py
Browse files- pages/1player_information.py +55 -47
pages/1player_information.py
CHANGED
@@ -40,55 +40,63 @@ st.title("🏏Career Insights")
|
|
40 |
file_path = "Final.csv" # Ensure this file exists in your working directory
|
41 |
df = pd.read_csv(file_path)
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
if selected_player in df["Player"].values:
|
50 |
-
player_data = df[df["Player"] == selected_player].iloc[0]
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
player_data["Matches_Test"],
|
55 |
-
player_data["Matches_ODI"],
|
56 |
-
player_data["Matches_T20"],
|
57 |
-
player_data["Matches_IPL"]
|
58 |
-
]
|
59 |
-
labels = ["Test", "ODI", "T20", "IPL"]
|
60 |
-
|
61 |
-
fig, ax = plt.subplots()
|
62 |
-
ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90,
|
63 |
-
colors=["#87CEEB", "#90EE90", "#FFA07A", "#9370DB"])
|
64 |
-
ax.set_title(f"Matches Played by {selected_player}", fontsize=14)
|
65 |
-
st.pyplot(fig)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
fig, ax = plt.subplots()
|
75 |
-
ax.bar(labels, batting_runs, color=["#FFD700", "#008000", "#1E90FF", "#FF4500"])
|
76 |
-
ax.set_ylabel("Runs Scored", fontsize=12)
|
77 |
-
ax.set_title(f"Runs Scored by {selected_player}", fontsize=14)
|
78 |
-
st.pyplot(fig)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
player_data["batting_Runs_Test"] / max(1, player_data["batting_Innings_Test"]),
|
83 |
-
player_data["batting_Runs_ODI"] / max(1, player_data["batting_Innings_ODI"]),
|
84 |
-
player_data["batting_Runs_T20"] / max(1, player_data["batting_Innings_T20"]),
|
85 |
-
player_data["batting_Runs_IPL"] / max(1, player_data["batting_Innings_IPL"])
|
86 |
-
]
|
87 |
-
fig, ax = plt.subplots()
|
88 |
-
ax.plot(labels, batting_average, marker='o', linestyle='-', color='#FFA500', linewidth=2)
|
89 |
-
ax.set_ylabel("Batting Average", fontsize=12)
|
90 |
-
ax.set_title(f"Batting Average of {selected_player}", fontsize=14)
|
91 |
-
st.pyplot(fig)
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
file_path = "Final.csv" # Ensure this file exists in your working directory
|
41 |
df = pd.read_csv(file_path)
|
42 |
|
43 |
+
# Get unique player names
|
44 |
+
player_names = df["Player"].unique()
|
45 |
|
46 |
+
# Autocomplete player selection
|
47 |
+
player_prefix = st.text_input("Enter at least first three letters of Player Name:")
|
|
|
|
|
|
|
48 |
|
49 |
+
if player_prefix and len(player_prefix) >= 3:
|
50 |
+
filtered_players = [name for name in player_names if name.lower().startswith(player_prefix.lower())]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
if filtered_players:
|
53 |
+
selected_player = st.selectbox("Select Player", filtered_players)
|
54 |
+
else:
|
55 |
+
st.warning("No matching player found.")
|
56 |
+
selected_player = None
|
57 |
+
else:
|
58 |
+
selected_player = None
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
if selected_player:
|
61 |
+
player_data = df[df["Player"] == selected_player].iloc[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Pie Chart - Matches Played Across Formats
|
64 |
+
matches = [
|
65 |
+
player_data["Matches_Test"],
|
66 |
+
player_data["Matches_ODI"],
|
67 |
+
player_data["Matches_T20"],
|
68 |
+
player_data["Matches_IPL"]
|
69 |
+
]
|
70 |
+
labels = ["Test", "ODI", "T20", "IPL"]
|
71 |
+
|
72 |
+
fig, ax = plt.subplots()
|
73 |
+
ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90,
|
74 |
+
colors=["#87CEEB", "#90EE90", "#FFA07A", "#9370DB"])
|
75 |
+
ax.set_title(f"Matches Played by {selected_player}", fontsize=14)
|
76 |
+
st.pyplot(fig)
|
77 |
+
|
78 |
+
# Bar Chart - Runs Scored in Different Formats
|
79 |
+
batting_runs = [
|
80 |
+
player_data["batting_Runs_Test"],
|
81 |
+
player_data["batting_Runs_ODI"],
|
82 |
+
player_data["batting_Runs_T20"],
|
83 |
+
player_data["batting_Runs_IPL"]
|
84 |
+
]
|
85 |
+
fig, ax = plt.subplots()
|
86 |
+
ax.bar(labels, batting_runs, color=["#FFD700", "#008000", "#1E90FF", "#FF4500"])
|
87 |
+
ax.set_ylabel("Runs Scored", fontsize=12)
|
88 |
+
ax.set_title(f"Runs Scored by {selected_player}", fontsize=14)
|
89 |
+
st.pyplot(fig)
|
90 |
+
|
91 |
+
# Line Chart - Batting Average Over Formats
|
92 |
+
batting_average = [
|
93 |
+
player_data["batting_Runs_Test"] / max(1, player_data["batting_Innings_Test"]),
|
94 |
+
player_data["batting_Runs_ODI"] / max(1, player_data["batting_Innings_ODI"]),
|
95 |
+
player_data["batting_Runs_T20"] / max(1, player_data["batting_Innings_T20"]),
|
96 |
+
player_data["batting_Runs_IPL"] / max(1, player_data["batting_Innings_IPL"])
|
97 |
+
]
|
98 |
+
fig, ax = plt.subplots()
|
99 |
+
ax.plot(labels, batting_average, marker='o', linestyle='-', color='#FFA500', linewidth=2)
|
100 |
+
ax.set_ylabel("Batting Average", fontsize=12)
|
101 |
+
ax.set_title(f"Batting Average of {selected_player}", fontsize=14)
|
102 |
+
st.pyplot(fig)
|