Spaces:
Sleeping
Sleeping
Update pages/1player_information.py
Browse files- pages/1player_information.py +64 -26
pages/1player_information.py
CHANGED
@@ -26,7 +26,9 @@ if selected_player:
|
|
26 |
player_data = df[df["Player"] == selected_player].iloc[0]
|
27 |
labels = ["Test", "ODI", "T20", "IPL"]
|
28 |
|
|
|
29 |
if show_batting:
|
|
|
30 |
col1, col2 = st.columns(2)
|
31 |
|
32 |
with col1:
|
@@ -101,29 +103,65 @@ if selected_player:
|
|
101 |
ax.set_title(f"Strike Rate & Batting Average of {selected_player}")
|
102 |
ax.legend()
|
103 |
st.pyplot(fig)
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
player_data = df[df["Player"] == selected_player].iloc[0]
|
27 |
labels = ["Test", "ODI", "T20", "IPL"]
|
28 |
|
29 |
+
# **Batting Stats Section**
|
30 |
if show_batting:
|
31 |
+
st.subheader(f"Batting Statistics - {selected_player}")
|
32 |
col1, col2 = st.columns(2)
|
33 |
|
34 |
with col1:
|
|
|
103 |
ax.set_title(f"Strike Rate & Batting Average of {selected_player}")
|
104 |
ax.legend()
|
105 |
st.pyplot(fig)
|
106 |
+
|
107 |
+
# **Bowling Stats Section**
|
108 |
+
if show_bowling:
|
109 |
+
st.subheader(f"Bowling Statistics - {selected_player}")
|
110 |
+
col1, col2 = st.columns(2)
|
111 |
+
|
112 |
+
with col1:
|
113 |
+
# Pie Chart - Wickets Taken Across Formats
|
114 |
+
wickets = [
|
115 |
+
player_data.get("Wickets_Test", 0),
|
116 |
+
player_data.get("Wickets_ODI", 0),
|
117 |
+
player_data.get("Wickets_T20", 0),
|
118 |
+
player_data.get("Wickets_IPL", 0)
|
119 |
+
]
|
120 |
+
fig, ax = plt.subplots(figsize=(5, 3))
|
121 |
+
ax.pie(wickets, labels=labels, autopct="%1.1f%%", startangle=90)
|
122 |
+
ax.set_title(f"Wickets Taken by {selected_player}")
|
123 |
+
st.pyplot(fig)
|
124 |
+
|
125 |
+
with col2:
|
126 |
+
# Bar Chart - Economy Rate
|
127 |
+
economy_rate = [
|
128 |
+
player_data.get("Economy_Test", 0),
|
129 |
+
player_data.get("Economy_ODI", 0),
|
130 |
+
player_data.get("Economy_T20", 0),
|
131 |
+
player_data.get("Economy_IPL", 0)
|
132 |
+
]
|
133 |
+
fig, ax = plt.subplots(figsize=(5, 3))
|
134 |
+
ax.bar(labels, economy_rate, color=["gold", "green", "blue", "red"])
|
135 |
+
ax.set_ylabel("Economy Rate")
|
136 |
+
ax.set_title(f"Economy Rate of {selected_player}")
|
137 |
+
st.pyplot(fig)
|
138 |
+
|
139 |
+
col3, col4 = st.columns(2)
|
140 |
+
|
141 |
+
with col3:
|
142 |
+
# Bar Chart - Balls Bowled
|
143 |
+
balls_bowled = [
|
144 |
+
player_data.get("bowling_Balls_Test", 0),
|
145 |
+
player_data.get("bowling_Balls_ODI", 0),
|
146 |
+
player_data.get("bowling_Balls_T20", 0),
|
147 |
+
player_data.get("bowling_Balls_IPL", 0)
|
148 |
+
]
|
149 |
+
fig, ax = plt.subplots(figsize=(5, 3))
|
150 |
+
ax.bar(labels, balls_bowled, color=["red", "green", "blue", "purple"])
|
151 |
+
ax.set_ylabel("Balls Bowled")
|
152 |
+
ax.set_title(f"Balls Bowled by {selected_player}")
|
153 |
+
st.pyplot(fig)
|
154 |
+
|
155 |
+
with col4:
|
156 |
+
# Bar Chart - Maidens Bowled
|
157 |
+
maidens_bowled = [
|
158 |
+
player_data.get("bowling_Maidens_Test", 0),
|
159 |
+
player_data.get("bowling_Maidens_ODI", 0),
|
160 |
+
player_data.get("bowling_Maidens_T20", 0),
|
161 |
+
player_data.get("bowling_Maidens_IPL", 0)
|
162 |
+
]
|
163 |
+
fig, ax = plt.subplots(figsize=(5, 3))
|
164 |
+
ax.bar(labels, maidens_bowled, color=["cyan", "magenta", "yellow", "black"])
|
165 |
+
ax.set_ylabel("Maidens Bowled")
|
166 |
+
ax.set_title(f"Maidens Bowled by {selected_player}")
|
167 |
+
st.pyplot(fig)
|