import streamlit as st import pandas as pd import matplotlib.pyplot as plt # Set page configuration st.set_page_config(page_title="Career Insights", layout="wide") # Load data df = pd.read_csv("Team_Info.csv") # Get unique player names player_names = df["Player"].unique() # Search box for filtering player names search_query = st.text_input("Search Player Name:") filtered_players = [name for name in player_names if search_query.lower() in name.lower()] if search_query else player_names # Player selection dropdown selected_player = st.selectbox("Select Player", filtered_players) # Buttons for Batting and Bowling show_batting = st.button("Show Batting Stats") show_bowling = st.button("Show Bowling Stats") if selected_player: player_data = df[df["Player"] == selected_player].iloc[0] labels = ["Test", "ODI", "T20", "IPL"] if show_batting: col1, col2 = st.columns(2) with col1: # Pie Chart - Matches Played Across Formats matches = [ player_data.get("Matches_Test", 0), player_data.get("Matches_ODI", 0), player_data.get("Matches_T20", 0), player_data.get("Matches_IPL", 0) ] fig, ax = plt.subplots() ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90) ax.set_title(f"Matches Played by {selected_player}") st.pyplot(fig) with col2: # Bar Chart - Runs Scored batting_runs = [ player_data.get("batting_Runs_Test", 0), player_data.get("batting_Runs_ODI", 0), player_data.get("batting_Runs_T20", 0), player_data.get("batting_Runs_IPL", 0) ] fig, ax = plt.subplots() ax.bar(labels, batting_runs, color=["gold", "green", "blue", "red"]) ax.set_ylabel("Runs Scored") ax.set_title(f"Runs Scored by {selected_player}") st.pyplot(fig) col3, col4 = st.columns(2) with col3: # Bar Chart - 100s and 50s hundreds = [ player_data.get("batting_100s_Test", 0), player_data.get("batting_100s_ODI", 0), player_data.get("batting_100s_T20", 0), player_data.get("batting_100s_IPL", 0) ] fifties = [ player_data.get("batting_50s_Test", 0), player_data.get("batting_50s_ODI", 0), player_data.get("batting_50s_T20", 0), player_data.get("batting_50s_IPL", 0) ] fig, ax = plt.subplots() ax.bar(labels, hundreds, label="100s", color="gold") ax.bar(labels, fifties, label="50s", color="blue", bottom=hundreds) ax.set_ylabel("Count") ax.set_title(f"Centuries & Fifties by {selected_player}") ax.legend() st.pyplot(fig) with col4: # Line Chart - Strike Rate & Average strike_rate = [ player_data.get("batting_SR_Test", 0), player_data.get("batting_SR_ODI", 0), player_data.get("batting_SR_T20", 0), player_data.get("batting_SR_IPL", 0) ] batting_avg = [ player_data.get("batting_Average_Test", 0), player_data.get("batting_Average_ODI", 0), player_data.get("batting_Average_T20", 0), player_data.get("batting_Average_IPL", 0) ] fig, ax = plt.subplots() ax.plot(labels, strike_rate, marker='o', linestyle='-', color='red', label="Strike Rate") ax.plot(labels, batting_avg, marker='s', linestyle='--', color='green', label="Batting Average") ax.set_ylabel("Value") ax.set_title(f"Strike Rate & Batting Average of {selected_player}") ax.legend() st.pyplot(fig) if show_bowling: col1, col2 = st.columns(2) with col1: # Bar Chart - Wickets Taken wickets = [ player_data.get("bowling_Test_Wickets", 0), player_data.get("bowling_ODI_Wickets", 0), player_data.get("bowling_T20_Wickets", 0), player_data.get("bowling_IPL_Wickets", 0) ] fig, ax = plt.subplots() ax.bar(labels, wickets, color=["gold", "green", "blue", "red"]) ax.set_ylabel("Wickets") ax.set_title(f"Wickets Taken by {selected_player}") st.pyplot(fig) with col2: # Bar Chart - Bowling Average bowling_avg = [ player_data.get("bowling_Test_Avg", 0), player_data.get("bowling_ODI_Avg", 0), player_data.get("bowling_T20_Avg", 0), player_data.get("bowling_IPL_Avg", 0) ] fig, ax = plt.subplots() ax.bar(labels, bowling_avg, color=["red", "blue", "green", "purple"]) ax.set_ylabel("Bowling Average") ax.set_title(f"Bowling Average of {selected_player}") st.pyplot(fig) # Bar Chart - Balls Bowled balls_bowled = [ player_data.get("bowling_Test_Balls", 0), player_data.get("bowling_ODI_Balls", 0), player_data.get("bowling_T20_Balls", 0), player_data.get("bowling_IPL_Balls", 0) ] fig, ax = plt.subplots() ax.bar(labels, balls_bowled, color=["orange", "cyan", "magenta", "yellow"]) ax.set_ylabel("Balls Bowled") ax.set_title(f"Balls Bowled by {selected_player}") st.pyplot(fig) # Bar Chart - Maidens Bowled maidens = [ player_data.get("bowling_Test_Maidens", 0), player_data.get("bowling_ODI_Maidens", 0), player_data.get("bowling_T20_Maidens", 0), player_data.get("bowling_IPL_Maidens", 0) ] fig, ax = plt.subplots() ax.bar(labels, maidens, color=["blue", "green", "red", "purple"]) ax.set_ylabel("Maidens") ax.set_title(f"Maidens Bowled by {selected_player}") st.pyplot(fig)