Create 2Decision-Tree.py
Browse files- pages/2Decision-Tree.py +141 -0
pages/2Decision-Tree.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
# Set page configuration
|
| 4 |
+
st.set_page_config(page_title="Decision Tree Theory", layout="wide")
|
| 5 |
+
|
| 6 |
+
# Custom CSS for styling
|
| 7 |
+
st.markdown("""
|
| 8 |
+
<style>
|
| 9 |
+
.stApp {
|
| 10 |
+
background: linear-gradient(135deg, #1e3c72, #2a5298);
|
| 11 |
+
}
|
| 12 |
+
h1, h2 {
|
| 13 |
+
color: #fdfdfd;
|
| 14 |
+
}
|
| 15 |
+
p, li {
|
| 16 |
+
font-family: 'Arial', sans-serif;
|
| 17 |
+
font-size: 18px;
|
| 18 |
+
color: #f0f0f0;
|
| 19 |
+
line-height: 1.6;
|
| 20 |
+
}
|
| 21 |
+
</style>
|
| 22 |
+
""", unsafe_allow_html=True)
|
| 23 |
+
|
| 24 |
+
# Title
|
| 25 |
+
st.markdown("<h1>Decision Tree</h1>", unsafe_allow_html=True)
|
| 26 |
+
|
| 27 |
+
# Introduction
|
| 28 |
+
st.markdown("""
|
| 29 |
+
A **Decision Tree** is a supervised learning method used for both classification and regression. It models decisions in a tree structure, where:
|
| 30 |
+
- The **Root Node** represents the full dataset.
|
| 31 |
+
- **Internal Nodes** evaluate features to split the data.
|
| 32 |
+
- **Leaf Nodes** give the output label or value.
|
| 33 |
+
|
| 34 |
+
It's like asking a series of "yes or no" questions to reach a final decision.
|
| 35 |
+
""", unsafe_allow_html=True)
|
| 36 |
+
|
| 37 |
+
# Entropy
|
| 38 |
+
st.markdown("<h2>Entropy: Quantifying Disorder</h2>", unsafe_allow_html=True)
|
| 39 |
+
st.markdown("""
|
| 40 |
+
**Entropy** helps measure randomness or impurity in data.
|
| 41 |
+
|
| 42 |
+
The formula for entropy is:
|
| 43 |
+
""")
|
| 44 |
+
st.image("entropy-formula-2.jpg", width=300)
|
| 45 |
+
st.markdown("""
|
| 46 |
+
If you have two classes (Yes/No) each with a 50% chance:
|
| 47 |
+
|
| 48 |
+
$$ H(Y) = - (0.5 \cdot \log_2(0.5) + 0.5 \cdot \log_2(0.5)) = 1 $$
|
| 49 |
+
|
| 50 |
+
This means maximum uncertainty.
|
| 51 |
+
""", unsafe_allow_html=True)
|
| 52 |
+
|
| 53 |
+
# Gini Impurity
|
| 54 |
+
st.markdown("<h2>Gini Impurity: Measuring Purity</h2>", unsafe_allow_html=True)
|
| 55 |
+
st.markdown("""
|
| 56 |
+
**Gini Impurity** is another metric that measures how often a randomly chosen element would be incorrectly classified.
|
| 57 |
+
|
| 58 |
+
The formula is:
|
| 59 |
+
""")
|
| 60 |
+
st.image("gini.png", width=300)
|
| 61 |
+
st.markdown("""
|
| 62 |
+
With 50% Yes and 50% No:
|
| 63 |
+
|
| 64 |
+
$$ Gini(Y) = 1 - (0.5^2 + 0.5^2) = 0.5 $$
|
| 65 |
+
|
| 66 |
+
A lower Gini means more purity.
|
| 67 |
+
""", unsafe_allow_html=True)
|
| 68 |
+
|
| 69 |
+
# Construction of Decision Tree
|
| 70 |
+
st.markdown("<h2>How a Decision Tree is Built</h2>", unsafe_allow_html=True)
|
| 71 |
+
st.markdown("""
|
| 72 |
+
The tree grows top-down, choosing the best feature at each step based on how well it splits the data. The process ends when:
|
| 73 |
+
- All samples in a node are of one class.
|
| 74 |
+
- A stopping condition like max depth is reached.
|
| 75 |
+
""", unsafe_allow_html=True)
|
| 76 |
+
|
| 77 |
+
# Iris Dataset
|
| 78 |
+
st.markdown("<h2>Iris Dataset Example</h2>", unsafe_allow_html=True)
|
| 79 |
+
st.markdown("""
|
| 80 |
+
This tree is trained on the famous **Iris dataset**, where features like petal length help classify the flower species.
|
| 81 |
+
""", unsafe_allow_html=True)
|
| 82 |
+
st.image("dt1 (1).jpg", caption="Decision Tree for Iris Dataset", use_container_width=True)
|
| 83 |
+
|
| 84 |
+
# Training & Testing - Classification
|
| 85 |
+
st.markdown("<h2>Training & Testing: Classification</h2>", unsafe_allow_html=True)
|
| 86 |
+
st.markdown("""
|
| 87 |
+
- During **training**, the model learns rules from labeled data using Gini or Entropy.
|
| 88 |
+
- In the **testing phase**, new samples are passed through the tree to make predictions.
|
| 89 |
+
|
| 90 |
+
Example: Predict Iris species based on its features.
|
| 91 |
+
""", unsafe_allow_html=True)
|
| 92 |
+
|
| 93 |
+
# Training & Testing - Regression
|
| 94 |
+
st.markdown("<h2>Training & Testing: Regression</h2>", unsafe_allow_html=True)
|
| 95 |
+
st.markdown("""
|
| 96 |
+
- For regression, the tree splits data to reduce **Mean Squared Error (MSE)**.
|
| 97 |
+
- Each leaf node predicts a continuous value (e.g., house price).
|
| 98 |
+
|
| 99 |
+
Example: Predicting house prices based on area, number of rooms, etc.
|
| 100 |
+
""", unsafe_allow_html=True)
|
| 101 |
+
|
| 102 |
+
# Pre-Pruning
|
| 103 |
+
st.markdown("<h2>Controlling Overfitting: Pre-Pruning</h2>", unsafe_allow_html=True)
|
| 104 |
+
st.markdown("""
|
| 105 |
+
**Pre-pruning** stops the tree from growing too large.
|
| 106 |
+
|
| 107 |
+
Techniques:
|
| 108 |
+
- **Max Depth**: Limits how deep the tree can go.
|
| 109 |
+
- **Min Samples Split**: Minimum data points needed to split a node.
|
| 110 |
+
- **Min Samples Leaf**: Minimum data points required in a leaf.
|
| 111 |
+
- **Max Features**: Restricts number of features used per split.
|
| 112 |
+
""", unsafe_allow_html=True)
|
| 113 |
+
|
| 114 |
+
# Post-Pruning
|
| 115 |
+
st.markdown("<h2>Post-Pruning: Simplifying After Training</h2>", unsafe_allow_html=True)
|
| 116 |
+
st.markdown("""
|
| 117 |
+
**Post-pruning** trims the tree **after** full training to reduce complexity.
|
| 118 |
+
|
| 119 |
+
Methods:
|
| 120 |
+
- **Cost Complexity Pruning**
|
| 121 |
+
- **Validation Set Pruning**
|
| 122 |
+
""", unsafe_allow_html=True)
|
| 123 |
+
|
| 124 |
+
# Feature Selection
|
| 125 |
+
st.markdown("<h2>Feature Selection with Trees</h2>", unsafe_allow_html=True)
|
| 126 |
+
st.markdown("""
|
| 127 |
+
Decision Trees can rank features by how much they reduce impurity at each split.
|
| 128 |
+
|
| 129 |
+
Here's the formula used:
|
| 130 |
+
""")
|
| 131 |
+
st.image("feature.png", width=500)
|
| 132 |
+
st.markdown("""
|
| 133 |
+
The higher the score, the more important the feature.
|
| 134 |
+
""", unsafe_allow_html=True)
|
| 135 |
+
|
| 136 |
+
# Implementation Link
|
| 137 |
+
st.markdown("<h2>Try It Yourself</h2>", unsafe_allow_html=True)
|
| 138 |
+
st.markdown(
|
| 139 |
+
"<a href='https://colab.research.google.com/drive/1SqZ5I5h7ivS6SJDwlOZQ-V4IAOg90RE7?usp=sharing' target='_blank' style='font-size: 16px; color: #add8e6;'>Open Jupyter Notebook</a>",
|
| 140 |
+
unsafe_allow_html=True
|
| 141 |
+
)
|