import streamlit as st # Custom styles st.markdown( """ """, unsafe_allow_html=True, ) # Title st.markdown("
General Algorithm

", unsafe_allow_html=True) # Basic Steps st.markdown("
Basic Steps

", unsafe_allow_html=True) st.markdown("
1. While guiding the machine, the main guidance comes from how we preprocess our data and choose the algorithm.
", unsafe_allow_html=True) st.markdown("
2. If we preprocess the data incorrectly and choose the wrong algorithm, it leads to bad model performance.
", unsafe_allow_html=True) st.markdown("
3. Inside the algorithm, there will be steps that the machine must follow while learning.
", unsafe_allow_html=True) # Based on the Algorithm st.markdown("
Based on the Algorithm

", unsafe_allow_html=True) st.markdown("
1. Identify whether the algorithm is Supervised, Unsupervised, Semi-supervised, or Reinforcement Learning.
", unsafe_allow_html=True) st.markdown("
2. If we choose Supervised Learning, we must decide between Classification or Regression based on the problem and data.
", unsafe_allow_html=True) # Preprocessing Steps st.markdown("
Basic Steps Before Training

", unsafe_allow_html=True) st.markdown("
1. When working with preprocessed tabular data, identify the feature variables and class variables.
", unsafe_allow_html=True) st.markdown("
Example: Iris Dataset
", unsafe_allow_html=True) st.markdown("
Feature Variables: Sepal Length, Sepal Width, Petal Length, Petal Width
", unsafe_allow_html=True) st.markdown("
Class Variable: Species
", unsafe_allow_html=True) st.markdown("
2. Divide the entire data into feature variables and class variables.
", unsafe_allow_html=True) st.markdown("
3. Now split the data into Training Set (DTrain) and Test Set (DTest).
", unsafe_allow_html=True) # Conditions for splitting st.markdown("
Conditions

", unsafe_allow_html=True) st.markdown("
1. Majority of the data should be in DTrain.
", unsafe_allow_html=True) st.markdown("
2. Minority of the data should be in DTest.
", unsafe_allow_html=True) st.markdown("
3. Common splits are 80:20, 70:30, or 60:40.
", unsafe_allow_html=True) st.markdown("
4. No single data point should be in both DTrain and DTest.
", unsafe_allow_html=True) st.markdown("
5. The split should be random, without replacement.
", unsafe_allow_html=True) st.markdown("
6. Each data point should have an equal probability of selection.
", unsafe_allow_html=True) # Navigation Buttons st.markdown("

", unsafe_allow_html=True) col1, col2, col3, col4 = st.columns(4) with col1: if st.button("KNN Algorithm"): st.switch_page("pages/1KNN Alogrithm.py") with col2: if st.button("Decision Tree"): st.switch_page("pages/2Decision-Tree.py") with col3: if st.button("Ensemble Techniques"): st.switch_page("pages/3Ensemble_Techniques.py") with col4: if st.button("Logistic Regression"): st.switch_page("pages/4Logistic_Regression.py")