import streamlit as st from streamlit_drawable_canvas import st_canvas from keras.models import load_model import numpy as np import cv2 # Page configuration st.set_page_config(page_title="DigitGlow - AI Digit Identifier", layout="centered") # Custom CSS Styling st.markdown( """
DigitGlow
AI-Powered Handwritten Digit Recognition

""", unsafe_allow_html=True ) # Sidebar - Drawing Settings st.sidebar.header("✏️ Canvas Controls") drawing_mode = st.sidebar.selectbox("Drawing tool:", ("freedraw", "line", "rect", "circle", "transform")) stroke_width = st.sidebar.slider("Stroke width:", 1, 25, 10) stroke_color = st.sidebar.color_picker("Stroke color:", "#FFFFFF") bg_color = st.sidebar.color_picker("Canvas background:", "#000000") realtime_update = st.sidebar.checkbox("Update in real-time", True) # Load Model @st.cache_resource def load_mnist_model(): return load_model("handwritten_digit_recognition.keras") model = load_mnist_model() # Layout columns col1, col2 = st.columns([1, 1]) with col1: st.markdown('
🖌️ Draw a digit below:
', unsafe_allow_html=True) canvas_result = st_canvas( fill_color="rgba(255, 255, 255, 1)", stroke_width=stroke_width, stroke_color=stroke_color, background_color=bg_color, update_streamlit=realtime_update, height=280, width=250, drawing_mode=drawing_mode, key="canvas", ) with col2: if canvas_result.image_data is not None: st.image(canvas_result.image_data, caption="Your Drawing", width=280) # Preprocess image img = cv2.cvtColor(canvas_result.image_data.astype("uint8"), cv2.COLOR_RGBA2GRAY) img = 255 - img img_resized = cv2.resize(img, (28, 28)) img_normalized = img_resized / 255.0 img_reshaped = img_normalized.reshape((1, 28, 28)) prediction = model.predict(img_reshaped) # Display Prediction st.markdown( f'
Prediction: {np.argmax(prediction)}
', unsafe_allow_html=True, )