import streamlit as st
from streamlit_drawable_canvas import st_canvas
from keras.models import load_model
import numpy as np
import cv2
# Page configuration
st.set_page_config(page_title="DigitGlow - AI Digit Identifier", layout="centered")
# Custom CSS Styling
st.markdown(
"""
DigitGlow
AI-Powered Handwritten Digit Recognition
""",
unsafe_allow_html=True
)
# Sidebar - Drawing Settings
st.sidebar.header("✏️ Canvas Controls")
drawing_mode = st.sidebar.selectbox("Drawing tool:", ("freedraw", "line", "rect", "circle", "transform"))
stroke_width = st.sidebar.slider("Stroke width:", 1, 25, 10)
stroke_color = st.sidebar.color_picker("Stroke color:", "#FFFFFF")
bg_color = st.sidebar.color_picker("Canvas background:", "#000000")
realtime_update = st.sidebar.checkbox("Update in real-time", True)
# Load Model
@st.cache_resource
def load_mnist_model():
return load_model("handwritten_digit_recognition.keras")
model = load_mnist_model()
# Layout columns
col1, col2 = st.columns([1, 1])
with col1:
st.markdown('🖌️ Draw a digit below:
', unsafe_allow_html=True)
canvas_result = st_canvas(
fill_color="rgba(255, 255, 255, 1)",
stroke_width=stroke_width,
stroke_color=stroke_color,
background_color=bg_color,
update_streamlit=realtime_update,
height=280,
width=250,
drawing_mode=drawing_mode,
key="canvas",
)
with col2:
if canvas_result.image_data is not None:
st.image(canvas_result.image_data, caption="Your Drawing", width=280)
# Preprocess image
img = cv2.cvtColor(canvas_result.image_data.astype("uint8"), cv2.COLOR_RGBA2GRAY)
img = 255 - img
img_resized = cv2.resize(img, (28, 28))
img_normalized = img_resized / 255.0
img_reshaped = img_normalized.reshape((1, 28, 28))
prediction = model.predict(img_reshaped)
# Display Prediction
st.markdown(
f'Prediction: {np.argmax(prediction)}
',
unsafe_allow_html=True,
)