Sathwikchowdary commited on
Commit
ba11aa1
·
verified ·
1 Parent(s): ddb9533

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +123 -0
app.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pandas as pd
4
+
5
+ st.title("PANDAS")
6
+ st.subheader("What is pandas?")
7
+ st.markdown("Pandas is a Python library used for working with data sets.")
8
+ st.markdown("It has functions for analyzing, cleaning, exploring, and manipulating data.")
9
+ st.markdown("The name Pandas has a reference to both Panel Data, and Python Data Analysis")
10
+ st.subheader("Why Use Pandas?")
11
+ st.markdown("Pandas allows us to analyze big data and make conclusions based on statistical theories.")
12
+ st.markdown("Pandas can clean messy data sets, and make them readable and relevant.")
13
+ st.markdown("Relevant data is very important in data science.")
14
+ st.subheader("What Can Pandas Do?")
15
+ st.markdown("Pandas gives you answers about the data. Like:")
16
+ st.write("Is there a correlation between two or more columns?")
17
+ st.markdown("What is average value?")
18
+ st.markdown("Max value?")
19
+ st.markdown("Min value?")
20
+ st.subheader("what is cleaning data:")
21
+ st.markdown("Pandas are also able to delete rows that are not relevant, or contains wrong values, like empty or NULL values. This is called cleaning the data.")
22
+ st.subheader("Installation of Pandas")
23
+ st.markdown("If you have Python and PIP already installed on a system, then installation of Pandas is very easy.")
24
+ st.markdown("or use a python distribution that already has Pandas installed like, Anaconda, Spyder etc.")
25
+ st.subheader("import pandas:")
26
+ st.markdown("Once Pandas is installed, import it in your applications by adding the import keyword:")
27
+ st.markdown("[import pandas]")
28
+ st.markdown("Now Pandas is imported and ready to use.")
29
+ st.subheader("Pandas as pd")
30
+ st.markdown("Pandas is usually imported under the pd alias.")
31
+ st.markdown("it is an alternate name of pandas")
32
+ st.markdown("instead of writing pandas we write pd")
33
+ st.subheader("Create an alias with the as keyword while importing:")
34
+ st.markdown("import pandas as pd")
35
+ st.markdown("Now the Pandas package can be referred to as pd instead of pandas.")
36
+ st.header("Pandas Series")
37
+ st.subheader("What is a Series?")
38
+ st.markdown("A Pandas Series is like a column in a table.")
39
+ st.markdown("It is a one-dimensional array holding data of any type.")
40
+ st.subheader("Example:")
41
+ st.markdown("Create a simple Pandas Series from a list:")
42
+ st.markdown("import pandas as pd")
43
+ st.markdown("a = [1, 7, 2]")
44
+ st.markdown("myvar = pd.Series(a)")
45
+ st.markdown("print(myvar)")
46
+ st.subheader("Output:")
47
+ st.markdown("0 , 1")
48
+ st.markdown("1 , 7")
49
+ st.markdown("2 , 2")
50
+ st.markdown("dtype: int64")
51
+ st.subheader("Labels:")
52
+ st.markdown("If nothing else is specified, the values are labeled with their index number. First value has index 0, second value has index 1 etc.")
53
+ st.markdown("This label can be used to access a specified value.")
54
+ st.subheader("Example:")
55
+ st.markdown("Return the first value of the Series:")
56
+ st.markdown("import pandas as pd")
57
+ st.markdown("a = [1, 7, 2]")
58
+ st.markdown("myvar = pd.Series(a)")
59
+ st.markdown("print(myvar[0])")
60
+ st.subheader("Output")
61
+ st.subheader("1")
62
+ st.subheader("Create Labels:")
63
+ st.markdown("with the index argument, you can name your own labels.")
64
+ st.subheader("Example:")
65
+ st.markdown("import pandas as pd")
66
+ st.markdown("a = [1, 7, 2]")
67
+ st.markdown("myvar = pd.Series a, index = [x, y, z]")
68
+ st.markdown("print(myvar)")
69
+ st.subheader("Output:")
70
+ st.markdown("x , 1")
71
+ st.markdown("y , 7")
72
+ st.markdown("z , 2")
73
+ st.markdown("dtype: int64")
74
+ st.markdown("When you have created labels, you can access an item by referring to the label.")
75
+ st.subheader("Example:")
76
+ st.markdown("Return the value of y:")
77
+ st.subheader("import pandas as pd")
78
+ st.markdown("a = [1, 7, 2]")
79
+ st.markdown("myvar = pd.Series(a, index = [x, y, z])")
80
+ st.markdown("print(myvar [y])")
81
+ st.subheader("Output:")
82
+ st.subheader("7")
83
+ st.subheader("Key/Value Objects as Series")
84
+ st.markdown("You can also use a key/value object, like a dictionary, when creating a Series.")
85
+ st.subheader("Example:")
86
+ st.markdown("Create a simple Pandas Series from a dictionary:")
87
+ st.markdown("import pandas as pd")
88
+ st.markdown("calories = day1 : 420, day2 : 380, day3 : 390")
89
+ st.markdown("myvar = pd.Series(calories)")
90
+ st.markdown("print(myvar)")
91
+ st.subheader("Output:")
92
+ st.markdown("day1 420")
93
+ st.markdown("day2 380")
94
+ st.markdown("day3 390")
95
+ st.markdown("dtype: int64")
96
+ st.markdown("Note: The keys of the dictionary become the labels.")
97
+ st.markdown("To select only some of the items in the dictionary, use the index argument and specify only the items you want to include in the Series.")
98
+ st.subheader("Example:")
99
+ st.markdown("import pandas as pd")
100
+ st.markdown("calories = day1 : 420, day2 : 380, day3 : 390")
101
+ st.markdown("myvar = pd.Series(calories, index = [day1, day2])")
102
+ st.markdown("print(myvar)")
103
+ st.subheader("Output:")
104
+ st.markdown("day1 , 420")
105
+ st.markdown("day2 , 380")
106
+ st.markdown("dtype: int64")
107
+ st.subheader("DataFrames:")
108
+ st.markdown("Data sets in Pandas are usually multi-dimensional tables, called DataFrames.")
109
+ st.markdown("Series is like a column, a DataFrame is the whole table.")
110
+ st.subheader("Example:")
111
+ st.markdown("Create a DataFrame from two Series:")
112
+ st.markdown("import pandas as pd")
113
+ st.markdown("data = {")
114
+ st.markdown("calories : [420, 380, 390],")
115
+ st.markdown("duration: [50, 40, 45]")
116
+ st.markdown("}")
117
+ st.markdown("myvar = pd.DataFrame(data)")
118
+ st.markdown("print(myvar)")
119
+ st.subheader("Output:")
120
+ st.markdown("calories duration")
121
+ st.markdown("0 , 420 , 50")
122
+ st.markdown("1 , 380 , 40")
123
+ st.markdown("2 , 390 , 45")