Create home.py
Browse files
home.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Load the trained model
|
7 |
+
MODEL_PATH = "/home/user/app/wine_quality_model.pkl" # Update with your actual model path
|
8 |
+
|
9 |
+
# Streamlit UI
|
10 |
+
st.set_page_config(page_title="🍷 Wine Quality Predictor", layout="centered")
|
11 |
+
|
12 |
+
# Custom Styling for Background and Text
|
13 |
+
st.markdown(
|
14 |
+
"""
|
15 |
+
<style>
|
16 |
+
.stApp {
|
17 |
+
background-color: #003366;
|
18 |
+
color: white;
|
19 |
+
}
|
20 |
+
.title {
|
21 |
+
font-size: 36px !important;
|
22 |
+
font-weight: bold;
|
23 |
+
color: white;
|
24 |
+
text-align: center;
|
25 |
+
}
|
26 |
+
.subtitle {
|
27 |
+
font-size: 24px !important;
|
28 |
+
font-weight: bold;
|
29 |
+
color: #ffcc00;
|
30 |
+
}
|
31 |
+
.stSlider label, .stNumberInput label {
|
32 |
+
font-size: 20px !important;
|
33 |
+
font-weight: bold;
|
34 |
+
color: white;
|
35 |
+
}
|
36 |
+
.stButton>button {
|
37 |
+
background-color: #ffcc00;
|
38 |
+
color: #003366;
|
39 |
+
font-size: 18px;
|
40 |
+
font-weight: bold;
|
41 |
+
border-radius: 10px;
|
42 |
+
}
|
43 |
+
.stButton>button:hover {
|
44 |
+
background-color: #ff9900;
|
45 |
+
color: white;
|
46 |
+
}
|
47 |
+
.prediction {
|
48 |
+
font-size: 26px;
|
49 |
+
font-weight: bold;
|
50 |
+
color: #32CD32;
|
51 |
+
text-align: center;
|
52 |
+
}
|
53 |
+
</style>
|
54 |
+
""",
|
55 |
+
unsafe_allow_html=True,
|
56 |
+
)
|
57 |
+
|
58 |
+
st.markdown('<h1 class="title">🍷 Wine Quality Prediction</h1>', unsafe_allow_html=True)
|
59 |
+
st.write("Predict the quality of wine based on its properties.")
|
60 |
+
|
61 |
+
# Check if model file exists
|
62 |
+
if os.path.exists(MODEL_PATH):
|
63 |
+
with open(MODEL_PATH, "rb") as f:
|
64 |
+
model = pickle.load(f)
|
65 |
+
model_loaded = True
|
66 |
+
else:
|
67 |
+
model_loaded = False
|
68 |
+
st.error(f"Model file '{MODEL_PATH}' not found. Please check your uploaded files.")
|
69 |
+
|
70 |
+
# User Inputs
|
71 |
+
alcohol = st.slider("Alcohol Content", 8.0, 15.0, 10.0)
|
72 |
+
volatile_acidity = st.slider("Volatile Acidity", 0.1, 1.5, 0.5)
|
73 |
+
citric_acid = st.slider("Citric Acid", 0.0, 1.0, 0.3)
|
74 |
+
sulphates = st.slider("Sulphates", 0.3, 2.0, 0.8)
|
75 |
+
pH = st.slider("pH Level", 2.5, 4.0, 3.2)
|
76 |
+
|
77 |
+
# Prepare input for model
|
78 |
+
input_data = np.array([[alcohol, volatile_acidity, citric_acid, sulphates, pH]])
|
79 |
+
|
80 |
+
# Prediction
|
81 |
+
if st.button("Predict Quality"):
|
82 |
+
if model_loaded:
|
83 |
+
prediction = model.predict(input_data)
|
84 |
+
st.markdown(f'<p class="prediction">Predicted Wine Quality Score: {prediction[0]:.1f}</p>', unsafe_allow_html=True)
|
85 |
+
else:
|
86 |
+
st.error(f"Model file '{MODEL_PATH}' not found. Please upload the model file and try again.")
|
87 |
+
|
88 |
+
st.write("*Powered by Machine Learning*")
|