File size: 3,900 Bytes
c500a02
2b3497a
0054165
59387da
 
d4eb272
0054165
 
 
 
 
 
 
d4eb272
0054165
d4eb272
 
 
 
 
 
0054165
d4eb272
 
 
 
 
 
0054165
d4eb272
 
 
 
 
 
0054165
 
 
d4eb272
0054165
 
 
 
 
 
 
 
 
 
 
d4eb272
 
 
 
 
 
 
 
 
 
 
 
59387da
 
 
d4eb272
59387da
 
 
 
 
 
d4eb272
59387da
 
 
 
d4eb272
59387da
 
 
 
d4eb272
59387da
 
 
 
d4eb272
59387da
d4eb272
59387da
d4eb272
 
59387da
 
 
 
 
 
d4eb272
59387da
 
 
 
d4eb272
59387da
 
 
 
d4eb272
59387da
 
 
 
d4eb272
59387da
 
 
 
d4eb272
59387da
0054165
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import streamlit as st

# Add custom CSS for background image
st.markdown(
    """
    <style>
    body {
        background-image: url('https://via.placeholder.com/1920x1080'); /* Replace with your image URL */
        background-size: cover;
        background-position: center;
        background-attachment: fixed;
        color: #FFFFFF; /* Set text color to contrast the background */
    }
    .shape-box { 
        background-color: rgba(255, 221, 193, 0.8); 
        padding: 10px; 
        border-radius: 5px; 
        text-align: center; 
        margin-bottom: 10px;
    }
    .shape-circle { 
        background-color: rgba(193, 225, 255, 0.8); 
        padding: 10px; 
        border-radius: 50%; 
        text-align: center; 
        margin-bottom: 10px;
    }
    .shape-diamond { 
        background-color: rgba(193, 255, 193, 0.8); 
        padding: 10px; 
        clip-path: polygon(50% 0%, 100% 50%, 50% 100%, 0% 50%);
        text-align: center; 
        margin-bottom: 10px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

# Function to display lifecycle descriptions
def display_lifecycle_stage(stage_name, description):
    st.subheader(stage_name)
    st.write(description)

# Title
st.title("Enhanced Machine Learning Life Cycle")

# Markdown Diagram with Shapes and Colors
st.markdown(
    """
    <div class="shape-box">Problem Statement</div>
    <div class="shape-circle">Data Collection</div>
    <div class="shape-box">Simple EDA</div>
    <div class="shape-diamond">Data Preprocessing</div>
    <div class="shape-box">EDA</div>
    <div class="shape-circle">Feature Engineering</div>
    <div class="shape-box">Training</div>
    <div class="shape-diamond">Testing</div>
    <div class="shape-box">Deploying</div>
    <div class="shape-circle">Monitoring</div>
    """,
    unsafe_allow_html=True,
)

# Buttons for each stage
st.markdown("### Select a Lifecycle Stage to Learn More:")
col1, col2 = st.columns(2)

with col1:
    if st.button("Problem Statement"):
        display_lifecycle_stage(
            "Problem Statement",
            "Defining the problem and setting objectives for the machine learning project."
        )
    if st.button("Simple EDA"):
        display_lifecycle_stage(
            "Simple EDA",
            "Performing initial exploratory data analysis to understand data distribution and trends."
        )
    if st.button("EDA"):
        display_lifecycle_stage(
            "EDA",
            "Detailed exploratory data analysis for deeper insights into data patterns."
        )
    if st.button("Training"):
        display_lifecycle_stage(
            "Training",
            "Fitting the model using the training dataset to learn patterns and relationships."
        )
    if st.button("Deploying"):
        display_lifecycle_stage(
            "Deploying",
            "Deploying the trained model to production for real-world use."
        )

with col2:
    if st.button("Data Collection"):
        display_lifecycle_stage(
            "Data Collection",
            "Gathering the data required for the machine learning project."
        )
    if st.button("Data Preprocessing"):
        display_lifecycle_stage(
            "Data Preprocessing",
            "Cleaning and transforming the data to prepare it for analysis."
        )
    if st.button("Feature Engineering"):
        display_lifecycle_stage(
            "Feature Engineering",
            "Creating new features or modifying existing ones to improve model performance."
        )
    if st.button("Testing"):
        display_lifecycle_stage(
            "Testing",
            "Evaluating the model's performance using a separate testing dataset."
        )
    if st.button("Monitoring"):
        display_lifecycle_stage(
            "Monitoring",
            "Monitoring the deployed model's performance and maintaining its accuracy."
        )