Spaces:
Sleeping
Sleeping
File size: 28,158 Bytes
242038e 1f95e93 242038e 1f95e93 242038e 1f95e93 242038e 1f95e93 242038e 1f95e93 0aa00cf 1f95e93 242038e 1f95e93 242038e 1f95e93 242038e 1f95e93 242038e 1f95e93 e6f9a5f 1f95e93 e6f9a5f 1f95e93 e6f9a5f 1f95e93 e6f9a5f 1f95e93 e6f9a5f 1f95e93 e6f9a5f 1f95e93 e6f9a5f 1f95e93 e6f9a5f 1f95e93 e6f9a5f 1f95e93 e6f9a5f 1f95e93 e6f9a5f 1f95e93 e6f9a5f 1f95e93 fdfbba3 1f95e93 fdfbba3 1f95e93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
import streamlit as st
import pandas as pd
import numpy as np
# Custom CSS for styling
custom_css = """
<style>
html, body, [data-testid="stAppViewContainer"] {
background-image: linear-gradient(
rgba(0, 0, 0, 0.6),
rgba(0, 0, 0, 0.6)
),
url("https://www.istockphoto.com/photo/tech-or-space-background-abstract-3d-illustration-gm1367865109-437999705?utm_source=pixabay&utm_medium=affiliate&utm_campaign=SRP_photo_sponsored&utm_content=https%3A%2F%2Fpixabay.com%2Fphotos%2Fsearch%2Fbackground%2520datascience%2F&utm_term=background+datascience.jpg");
background-size: cover;
background-position: center;
background-repeat: no-repeat;
background-attachment: fixed;
color: white; /* Ensures all text is readable */
}
h2, h3 {
color: #FFD700; /* Gold color for headings */
}
p {
color: #FFFFFF; /* White text for paragraphs */
}
.stButton>button {
background-color: #4CAF50; /* Green */
color: white;
padding: 10px 24px;
border: none;
border-radius: 5px;
text-align: center;
font-size: 16px;
margin: 4px 2px;
transition-duration: 0.4s;
cursor: pointer;
}
.stButton>button:hover {
background-color: #45a049; /* Darker Green on hover */
color: white;
}
.stButton>div:nth-child(1)>button {
background-color: #2196F3; /* Blue */
}
.stButton>div:nth-child(2)>button {
background-color: #f44336; /* Red */
}
.stButton>div:nth-child(3)>button {
background-color: #FF9800; /* Orange */
}
</style>
"""
# Inject the CSS into the app
st.markdown("<div class='title'>Introduction to Image Data π</div>", unsafe_allow_html=True)
st.markdown(
"""
<div class="section">
<div class="header">What is an Image?</div>
<div class="content">An image is a visual representation of something, such as a person, object, scene, or concept.
It can be created using various means and exists in different forms.<br>
The image is a 2D grid like structure where every grid represents a pixel and each pixel has its own features. <br>
The features in a pixel include theinformation like shape, color, pattern etc.<br>
The clarity of an image directly depends on the number of pixels it has. <br>
Every array cannot be an image. An array can be an image only when:<br>
1) It should be in 2D or 3D representation.<br>
2) The datatype should only be an integer.
</div>
</div>
<div class="section">
<div class="header">What are Color Spaces?</div>
<div class="content">
Color Space is a technique by which we can represent the colors of an image.<br>
There are 3 types of color spaces namely:<br>
1) Black & White Color Space
2) Grayscale Color Space
3) RGB Color Space
</div>
</div>
<div class="section">
<div class="header">Black & White Color Space</div>
<div class="content">
In this Color Space, there are only 2 colors to represent the image which are black & white.<br>
Here, 0 represents black and 1 represents white.
</div>
</div>
<div class="section">
<div class="header">Grayscale Color Space</div>
<div class="content">
In this Color Space, we have black, white and multiple shades of gray to represent the image.<br>
Here, 0 represents black, 255 represents white, and 1 to 254 represent various shades of gray.
</div>
</div>
<div class="section">
<div class="header">RGB Color Space</div>
<div class="content">
In this Color Space, we create a 3D structure with three 2D channels namely blue, green and red channels
where 0 represents absense of color and 255 represents presense of color.<br>
These 3 channels are stacked one after the another like a layered structure.<br>
The blue channel has 0 which represents black, 255 which represents blue and 1 to 254 represent multiple shades of blue.<br>
The green channel has 0 which represents black, 255 which represents green and 1 to 254 represent multiple shades of green.<br>
The red channel has 0 which represents black, 255 which represents red and 1 to 254 represent multiple shades of red.<br>
</div><br><br>
</div>
""",
unsafe_allow_html=True,
)
if st.button("Next Page: Basic operations on an Image"):
st.session_state['page'] = 'image_operations'
if page == 'image_operations':
st.markdown("<div class='title'>Basic Operations on an Image</div>", unsafe_allow_html=True)
st.markdown(
"""
<div class="section">
<div class="header">Operations on image data</div>
<div class="content">There are 3 major operations which can be performed on an image namely:<br>
1) Reading an image<br>
2) Writing an image<br>
3) Showing an image
</div>
<div class="section">
<div class="header">Reading an image</div>
<div class="content">
For this operation, we have to import <code>cv2</code> module and use the method <code>imread()</code>.
The method <code>imread()</code> is used to convert an image file into a numpy array.
</div>
</div>
<div class="section">
<div class="header">Writing an image</div>
<div class="content">
For this operation, we have to import <code>cv2</code> module and use the method <code>imwrite()</code>.
The method <code>imwrite()</code> is used to convert a numpy array back into an image file.
</div>
</div>
<div class="section">
<div class="header">Showing an image</div>
<div class="content">
For this operation, we have to import <code>cv2</code> module and use the method <code>imshow()</code>.
The method <code>imshow()</code> is used to display an array in the form of an image by creating a popup window.
</div>
</div><br><br>
""",
unsafe_allow_html=True,
)
col1, col2 = st.columns(2)
with col1:
if st.button("Open Jupyter Notebook"):
st.session_state['jupyter_clicked'] = True
st.session_state['pdf_clicked'] = False
with col2:
if st.button("Open PDF"):
st.session_state['pdf_clicked'] = True
st.session_state['jupyter_clicked'] = False
if st.session_state['jupyter_clicked']:
st.markdown(
"""
<div class="section">
<div class="header">Jupyter Notebook for Basic Operations on an Image </div>
<div class="content">This Jupyter notebook explains the basic operations that can be performed on an image.</div>
</div>
""",
unsafe_allow_html=True,
)
# Embed the converted HTML file for the notebook
notebook_html_path = "pages/basic_img_ops.html"
with open(notebook_html_path, "r") as f:
notebook_html = f.read()
st.components.v1.html(notebook_html, height=500, scrolling=True)
elif st.session_state['pdf_clicked']:
st.markdown(
"""
<div class="section">
<div class="header">PDF file for Basic Operations on an Image</div>
<div class="content">This PDFfile explains the basic operations that can be performed on an image.</div>
</div>
""",
unsafe_allow_html=True,
)
pdf_path = "pages/basic_img_ops.pdf"
# Read the PDF file content (binary data)
with open(pdf_path, "rb") as file:
pdf_data = file.read() # This is the binary data of the PDF file
# Display the PDF in an iframe
st.markdown(
f'<iframe src="data:application/pdf;base64,{base64.b64encode(pdf_data).decode()}" width="100%" height="600px"></iframe>',
unsafe_allow_html=True,
)
# Provide download option for the PDF file
st.download_button(
label="Download PDF",
data=pdf_data, # Provide the binary file data here
file_name="basic_img_ops.pdf", # This is the name that will appear when the user downloads the file
mime="application/pdf"
)
if st.button("Next Page: Working on the Image"):
st.session_state['page'] = 'image_working'
elif page == 'image_working':
st.markdown("<div class='title'>Working on the Image</div>", unsafe_allow_html=True)
st.markdown(
"""
<div class="section">
<div class="header">Understanding split() method</div>
<div class="content">
For this operation, we have to import <code>cv2</code> module and use the method <code>split()</code>.<br><br>
The <code>split()</code> method is used to separate a multi-channel image into its individual single-channel components.<br>
</div>
<div class="section">
<div class="header">Understanding merge() method</div>
<div class="content">
For this operation, we have to import <code>cv2</code> module and use the method <code>merge()</code>.<br><br>
The <code>merge()</code> method is used to combine multiple single-channel images into a single multi-channel image.<br><br>
</div>
</div><br><br>
""",
unsafe_allow_html=True,
)
col1, col2 = st.columns(2)
with col1:
if st.button("Open Jupyter Notebook"):
st.session_state['jupyter_clicked'] = True
st.session_state['pdf_clicked'] = False
with col2:
if st.button("Open PDF"):
st.session_state['pdf_clicked'] = True
st.session_state['jupyter_clicked'] = False
if st.session_state['jupyter_clicked']:
st.markdown(
"""
<div class="section">
<div class="header">Jupyter Notebook for Basic Operations on an Image </div>
<div class="content">This Jupyter notebook explains the split and merge methods that can be performed on an image.</div>
</div>
""",
unsafe_allow_html=True,
)
# Embed the converted HTML file for the notebook
notebook_html_path = "pages/working_on_img.html"
with open(notebook_html_path, "r") as f:
notebook_html = f.read()
st.components.v1.html(notebook_html, height=500, scrolling=True)
elif st.session_state['pdf_clicked']:
st.markdown(
"""
<div class="section">
<div class="header">PDF file for Basic Operations on an Image</div>
<div class="content">This PDF file explains the split and merge methods that can be performed on an image.</div>
</div>
""",
unsafe_allow_html=True,
)
pdf_path = "pages/working_on_img.pdf"
# Read the PDF file content (binary data)
with open(pdf_path, "rb") as file:
pdf_data = file.read() # This is the binary data of the PDF file
# Display the PDF in an iframe
st.markdown(
f'<iframe src="data:application/pdf;base64,{base64.b64encode(pdf_data).decode()}" width="100%" height="600px"></iframe>',
unsafe_allow_html=True,
)
# Provide download option for the PDF file
st.download_button(
label="Download PDF",
data=pdf_data, # Provide the binary file data here
file_name="working_on_img.pdf", # This is the name that will appear when the user downloads the file
mime="application/pdf"
)
if st.button("Next Page: Conversion between Color Spaces"):
st.session_state['page'] = 'color_space_conversion_on_img'
elif page == 'color_space_conversion_on_img':
st.markdown("<div class='title'>Conversion between Color Spaces</div>", unsafe_allow_html=True)
st.markdown(
"""
<div class="section">
<div class="header">How to convert one color space to another?</div>
<div class="content">
In the <code>cv2</code> module, we have an in-built method called <code>cvtColor()</code>
along with in-built parameters for each conversion.<br><br>
1) For converting BGR to Grayscale,
We use the parameter <code>COLOR_BGR2GRAY</code> inside the <code>cvtColor()</code> method.<br><br>
2) For converting Grayscale to BGR,
We use the parameter <code>COLOR_GRAY2BGR</code> inside the <code>cvtColor()</code> method.<br><br>
3) For converting BGR to RGB,
We use the parameter <code>COLOR_BGR2RGB</code> inside the <code>cvtColor()</code> method.<br><br>
</div>
</div><br><br>
""",
unsafe_allow_html=True,
)
col1, col2 = st.columns(2)
with col1:
if st.button("Open Jupyter Notebook"):
st.session_state['jupyter_clicked'] = True
st.session_state['pdf_clicked'] = False
with col2:
if st.button("Open PDF"):
st.session_state['pdf_clicked'] = True
st.session_state['jupyter_clicked'] = False
if st.session_state['jupyter_clicked']:
st.markdown(
"""
<div class="section">
<div class="header">Jupyter Notebook for Basic Operations on an Image </div>
<div class="content">This Jupyter notebook explains the split and merge methods that can be performed on an image.</div>
</div>
""",
unsafe_allow_html=True,
)
# Embed the converted HTML file for the notebook
notebook_html_path = "pages/converting_color_spaces.html"
with open(notebook_html_path, "r") as f:
notebook_html = f.read()
st.components.v1.html(notebook_html, height=500, scrolling=True)
elif st.session_state['pdf_clicked']:
st.markdown(
"""
<div class="section">
<div class="header">PDF file for Basic Operations on an Image</div>
<div class="content">This PDF file explains the split and merge methods that can be performed on an image.</div>
</div>
""",
unsafe_allow_html=True,
)
pdf_path = "pages/converting_color_spaces.pdf"
# Read the PDF file content (binary data)
with open(pdf_path, "rb") as file:
pdf_data = file.read() # This is the binary data of the PDF file
# Display the PDF in an iframe
st.markdown(
f'<iframe src="data:application/pdf;base64,{base64.b64encode(pdf_data).decode()}" width="100%" height="600px"></iframe>',
unsafe_allow_html=True,
)
# Provide download option for the PDF file
st.download_button(
label="Download PDF",
data=pdf_data, # Provide the binary file data here
file_name="converting_color_spaces.pdf", # This is the name that will appear when the user downloads the file
mime="application/pdf"
)
if st.button("Next Page: Affine Transformations on an Image"):
st.session_state['page'] = 'affine_transformations'
elif page == 'affine_transformations':
st.markdown("<div class='title'>Affine Transformations on an Image</div>", unsafe_allow_html=True)
st.markdown(
"""
<div class="section">
<div class="header">What are Affine Transformations?</div>
<div class="content">
Affine Transformations are a part of Image augmentation.<br>
Image augmentation is a technique of creating new images from the existing images.<br>
This technique is used to create a balance in the dataset.<br>
For a particular label, ff there are less images compared to the other label,
we increase the no. of images in that label using Image augmentation.<br><br>
Advantages of Affine Transformations include:<br>
1) We convert our imbalanced data into balanced data.<br>
2) We get new images from old ones<br><br>
</div>
<div class="header">Types of Affine Transformations?</div>
<div class="content">
There are 5 types of Affine Transformations namely:<br>
1) Translation<br>
2) Rotation<br>
3) Scaling<br>
4) Shearing<br>
5) Cropping<br><br>
</div>
<div class="header">Translation</div>
<div class="content">
It is a technique of shifting the image by some bits on the X-axis and the Y-axis.<br>
The extra bits created are replaced with black color or duplicate pixels.<br>
We apply a Translation matrix ( Tm ) for this.<br>
</div>
<div class="header">Rotation</div>
<div class="content">
It is a technique of rotating the image by at an angle from the specified position.<br>
We apply a Rotation matrix ( Rm ) for this.<br>
We can use a combination of Rotation & Translation in the same Rotation matrix ( Rm )<br>
</div>
<div class="header">Scaling</div>
<div class="content">
It is a technique of increasing or decreasing the size of the image by a particular scale.<br>
We apply a Scaling matrix ( Sm ) for this.<br>
We can use a combination of Scaling & Translation in the same Scaling matrix ( Sm )<br>
</div>
<div class="header">Shearing</div>
<div class="content">
It is a technique of stretching the image from its edges by a particular value.<br>
We apply a Shearing matrix ( Shm ) for this.<br>
We can use a combination of Shearing, Scaling & Translation in the same Shearing matrix ( Shm )<br>
</div>
<div class="header">Cropping</div>
<div class="content">
It is a technique of extracting or cutting a part of the image from the original image.<br>
We don't have a cropping matrix for this technique.<br>
Instead, we have to do it manually using slicing operation on the Numpy array.<br>
</div>
</div><br><br>
""",
unsafe_allow_html=True,
)
col1, col2 = st.columns(2)
with col1:
if st.button("Open Jupyter Notebook"):
st.session_state['jupyter_clicked'] = True
st.session_state['pdf_clicked'] = False
with col2:
if st.button("Open PDF"):
st.session_state['pdf_clicked'] = True
st.session_state['jupyter_clicked'] = False
if st.session_state['jupyter_clicked']:
st.markdown(
"""
<div class="section">
<div class="header">Jupyter Notebook for Basic Operations on an Image </div>
<div class="content">This Jupyter notebook explains all the affine transformations that can be performed on an image.</div>
</div>
""",
unsafe_allow_html=True,
)
# Embed the converted HTML file for the notebook
notebook_html_path = "pages/affine_transformations.html"
with open(notebook_html_path, "r") as f:
notebook_html = f.read()
st.components.v1.html(notebook_html, height=500, scrolling=True)
elif st.session_state['pdf_clicked']:
st.markdown(
"""
<div class="section">
<div class="header">PDF file for Basic Operations on an Image</div>
<div class="content">This PDF file explains all the affine transformations that can be performed on an image.</div>
</div>
""",
unsafe_allow_html=True,
)
pdf_path = "pages/affine_transformations.pdf"
# Read the PDF file content (binary data)
with open(pdf_path, "rb") as file:
pdf_data = file.read() # This is the binary data of the PDF file
# Display the PDF in an iframe
st.markdown(
f'<iframe src="data:application/pdf;base64,{base64.b64encode(pdf_data).decode()}" width="100%" height="600px"></iframe>',
unsafe_allow_html=True,
)
# Provide download option for the PDF file
st.download_button(
label="Download PDF",
data=pdf_data, # Provide the binary file data here
file_name="affine_transformations.pdf", # This is the name that will appear when the user downloads the file
mime="application/pdf"
)
if st.button("Next Page: Handling Video Data"):
st.session_state['page'] = 'video_data'
elif page == 'video_data':
st.markdown("<div class='title'>Handling Video Data</div>", unsafe_allow_html=True)
st.markdown(
"""
<div class="section">
<div class="header">What is a Video?</div>
<div class="content">
A video is a sequence of images, called frames, displayed rapidly one after another to create the illusion of motion.<br><br>
To deal with the video data, we import the <code>cv2</code> module and use the <code>VideoCapture()</code> method.<br><br>
<code>VideoCapture()</code> method is used to converts a video into list of frames.<br><br>
</div>
<div class="header">Playing the Video</div>
<div class="content">
If we specify a path inside <code>VideoCapture()</code> method, it reads the particular video.<br><br>
</div>
<div class="header">Live Video capturing</div>
<div class="content">
If we assign 0 inside the <code>VideoCapture()</code> method, it open the Web camera for live video capturing.<br><br>
</div><br><br>
""",
unsafe_allow_html=True,
)
col1, col2 = st.columns(2)
with col1:
if st.button("Open Jupyter Notebook"):
st.session_state['jupyter_clicked'] = True
st.session_state['pdf_clicked'] = False
with col2:
if st.button("Open PDF"):
st.session_state['pdf_clicked'] = True
st.session_state['jupyter_clicked'] = False
if st.session_state['jupyter_clicked']:
st.markdown(
"""
<div class="section">
<div class="header">Jupyter Notebook for Basic Operations on an Image </div>
<div class="content">This Jupyter notebook explains how to handle video data.</div>
</div>
""",
unsafe_allow_html=True,
)
# Embed the converted HTML file for the notebook
notebook_html_path = "pages/handling_video_data.html"
with open(notebook_html_path, "r") as f:
notebook_html = f.read()
st.components.v1.html(notebook_html, height=500, scrolling=True)
elif st.session_state['pdf_clicked']:
st.markdown(
"""
<div class="section">
<div class="header">PDF file for Basic Operations on an Image</div>
<div class="content">This PDF file explains how to handle video data.</div>
</div>
""",
unsafe_allow_html=True,
)
pdf_path = "pages/handling_video_data.pdf"
# Read the PDF file content (binary data)
with open(pdf_path, "rb") as file:
pdf_data = file.read() # This is the binary data of the PDF file
# Display the PDF in an iframe
st.markdown(
f'<iframe src="data:application/pdf;base64,{base64.b64encode(pdf_data).decode()}" width="100%" height="600px"></iframe>',
unsafe_allow_html=True,
)
# Provide download option for the PDF file
st.download_button(
label="Download PDF",
data=pdf_data, # Provide the binary file data here
file_name="handling_video_data.pdf", # This is the name that will appear when the user downloads the file
mime="application/pdf"
)
if st.button("Next Page: Interesting projects on Image & Video data"):
st.session_state['page'] = 'projects'
elif page == 'projects':
st.markdown("<div class='title'>π₯β¨ Interesting Projects on Image & Video Data ππΌοΈ</div>", unsafe_allow_html=True)
st.markdown(
"""
<div class="section">
<div class="header">Converting an Image into Tabular data</div>
<div class="content">
This amazing project explains how we can convert an image into tabular data. Check this out below π
<br>
</div>
</div><br>
""",
unsafe_allow_html=True,
)
if st.button("Go to Project 1"):
js = "window.open('https://github.com/ChaitanyaSubhakar/Handling-Image-and-Video/blob/main/converting_image_into_tabular_data.ipynb')"
st.components.v1.html(f"<script>{js}</script>", height=0)
st.markdown(
"""
<div class="section">
<div class="header">Converting a Video into Tabular data</div>
<div class="content">
This amazing project explains how we can convert a video into tabular data. Check this out below π
<br>
</div>
</div><br>
""",
unsafe_allow_html=True,
)
if st.button("Go to Project 2"):
js = "window.open('https://github.com/ChaitanyaSubhakar/Handling-Image-and-Video/blob/main/converting_videos_into_tabular_data.ipynb')"
st.components.v1.html(f"<script>{js}</script>", height=0)
st.markdown(
"""
<div class="section">
<div class="header">Animation Project</div>
<div class="content">
This amazing project explains how we can create interesting Animation videos using OpenCV package. Check this out below π
<br>
</div>
</div><br>
""",
unsafe_allow_html=True,
)
if st.button("Go to Project 3"):
js = "window.open('https://github.com/ChaitanyaSubhakar/Handling-Image-and-Video/blob/main/animation_project_opencv.ipynb')"
st.components.v1.html(f"<script>{js}</script>", height=0)
st.markdown(
"""
<div class="section">
<div class="header">GIF Project</div>
<div class="content">
This amazing project explains how we can create an interesting GIF using OpenCV package. Check this out below π
<br>
</div>
</div><br>
""",
unsafe_allow_html=True,
)
if st.button("Go to Project 4"):
js = "window.open('https://github.com/ChaitanyaSubhakar/Handling-Image-and-Video/blob/main/GIF_project.ipynb')"
st.components.v1.html(f"<script>{js}</script>", height=0)
st.markdown(
"""
<div class="section">
<div class="header">Cropping Tool</div>
<div class="content">
This amazing project explains how we can create an interesting GIF using OpenCV package. Check this out below π
<br>
</div>
</div><br>
""",
unsafe_allow_html=True,
)
if st.button("Go to Project 5"):
js = "window.open('https://github.com/ChaitanyaSubhakar/Handling-Image-and-Video/blob/main/cropping_tool.ipynb')"
st.components.v1.html(f"<script>{js}</script>", height=0)
if st.button("Return to main page.."):
st.session_state['page'] = 'unstructured_data'
|