Spaces:
Sleeping
Sleeping
## Shapes Representing the ML Life Cycle | |
<svg width="600" height="300"> | |
<!-- Problem Definition (Rectangle) --> | |
<rect x="50" y="50" width="150" height="50" fill="#FFB6C1" stroke="#000" /> | |
<text x="75" y="80" fill="#000" font-size="14">Problem Definition</text> | |
<!-- Data Collection (Circle) --> | |
<circle cx="300" cy="75" r="40" fill="#ADD8E6" stroke="#000" /> | |
<text x="270" y="80" fill="#000" font-size="14">Data Collection</text> | |
<!-- Data Preprocessing (Ellipse) --> | |
<ellipse cx="500" cy="75" rx="80" ry="40" fill="#90EE90" stroke="#000" /> | |
<text x="445" y="80" fill="#000" font-size="14">Data Preprocessing</text> | |
<!-- Arrows between Problem Definition and Data Collection --> | |
<line x1="200" y1="75" x2="260" y2="75" stroke="#000" marker-end="url(#arrow)" /> | |
<!-- Model Building (Rectangle) --> | |
<rect x="50" y="200" width="150" height="50" fill="#FFD700" stroke="#000" /> | |
<text x="75" y="230" fill="#000" font-size="14">Model Building</text> | |
<!-- Evaluation (Circle) --> | |
<circle cx="300" cy="225" r="40" fill="#FF7F50" stroke="#000" /> | |
<text x="275" y="230" fill="#000" font-size="14">Evaluation</text> | |
<!-- Deployment (Rectangle) --> | |
<rect x="450" y="200" width="150" height="50" fill="#9370DB" stroke="#000" /> | |
<text x="475" y="230" fill="#000" font-size="14">Deployment</text> | |
<!-- Arrows between Model Building, Evaluation, and Deployment --> | |
<line x1="125" y1="250" x2="260" y2="225" stroke="#000" marker-end="url(#arrow)" /> | |
<line x1="340" y1="225" x2="450" y2="225" stroke="#000" marker-end="url(#arrow)" /> | |
<!-- Define arrow marker --> | |
<defs> | |
<marker id="arrow" viewBox="0 0 10 10" refX="5" refY="5" markerWidth="4" markerHeight="4" orient="auto"> | |
<polygon points="0,0 10,5 0,10" fill="#000" /> | |
</marker> | |
</defs> | |
</svg> | |
""" | |
# Render HTML content in Streamlit | |
st.markdown(html_content, unsafe_allow_html=True) | |
# Render the SVG | |
st.markdown(html_content, unsafe_allow_html=True) | |
# Interactive buttons for stages | |
st.subheader("Stages in ML Life Cycle") | |
if st.button("Problem Statement"): | |
st.write("Understanding the problem and setting objectives for the ML model.") | |
if st.button("Data Collection"): | |
st.write("Gathering relevant data for model training.") | |
if st.button("Simple EDA"): | |
st.write("Initial analysis to understand the dataset's basic properties.") | |
if st.button("Data Preprocessing"): | |
st.write("Cleaning the data to ensure it's in a usable format.") | |
if st.button("EDA"): | |
st.write("Deeper analysis to gain insights and find patterns in the data.") | |
if st.button("Feature Engineering"): | |
st.write("Creating new features or modifying existing ones to improve model performance.") | |
if st.button("Training"): | |
st.write("Training machine learning models using the processed data.") | |
if st.button("Testing"): | |
st.write("Evaluating the trained model using a test set to assess its performance.") | |
if st.button("Deploying"): | |
st.write("Deploying the model to a production environment.") | |
if st.button("Monitoring"): | |
st.write("Continuously monitoring the model's performance in the production environment.") | |