Spaces:
Sleeping
Sleeping
import streamlit as st | |
# Custom styles | |
st.markdown( | |
""" | |
<style> | |
.stApp { | |
background-color: #f0f8ff; | |
} | |
.title { | |
text-align: center; | |
color: black; | |
font-size: 36px; | |
font-family: 'Arial', sans-serif; | |
font-weight: bold; | |
} | |
.header { | |
font-size: 28px; | |
font-family: 'Arial', sans-serif; | |
color: black; /* Black for headings */ | |
font-style: italic; | |
font-weight: bold; | |
} | |
.content { | |
font-size: 16px; | |
font-family: 'Arial', sans-serif; | |
color: blue; /* Blue for text */ | |
font-style: italic; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Main content | |
st.markdown("<div class='title'>General Algorithm</div><br>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>At the time of training, the machine requires two things: Data & Algorithm.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='header'>Basic Steps</div><br>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>1. While guiding the machine, the main guidance comes from how we preprocess our data and choose the algorithm.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>2. If we preprocess the data incorrectly and choose the wrong algorithm, it leads to bad model performance.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>3. Inside the algorithm, there will be steps that the machine must follow while learning.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='header'>Based on the Algorithm</div><br>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>1. Identify whether the algorithm is Supervised, Unsupervised, Semi-supervised, or Reinforcement Learning.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>2. If we choose Supervised Learning, we must decide between Classification or Regression based on the problem and data.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='header'>Basic Steps Before Training</div><br>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>1. When working with preprocessed tabular data, identify the feature variables and class variables.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'><b>Example:</b> Iris Dataset</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'><b>Feature Variables:</b> Sepal Length, Sepal Width, Petal Length, Petal Width</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'><b>Class Variable:</b> Species</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>2. Divide the entire data into feature variables and class variables.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>3. Now split the data into Training Set (DTrain) and Test Set (DTest).</div>", unsafe_allow_html=True) | |
st.markdown("<div class='header'>Conditions</div><br>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>1. Majority of the data should be in DTrain.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>2. Minority of the data should be in DTest.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>3. Common splits are 80:20, 70:30, or 60:40.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>4. No single data point should be in both DTrain and DTest.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>5. The split should be random, without replacement.</div>", unsafe_allow_html=True) | |
st.markdown("<div class='content'>6. Each data point should have an equal probability of selection.</div>", unsafe_allow_html=True) | |
# KNN Algorithm Button | |
if st.button("KNN Algorithm"): | |
st.switch_page("pages/KNN Alogrithm.py") | |