Sathwikchowdary commited on
Commit
115cca1
·
verified ·
1 Parent(s): e6e1c1e

Delete pages/14Algorthims.py

Browse files
Files changed (1) hide show
  1. pages/14Algorthims.py +0 -67
pages/14Algorthims.py DELETED
@@ -1,67 +0,0 @@
1
- import streamlit as st
2
-
3
- # Custom styles
4
- st.markdown(
5
- """
6
- <style>
7
- .stApp {
8
- background-color: #f0f8ff;
9
- }
10
- .title {
11
- text-align: center;
12
- color: black;
13
- font-size: 36px;
14
- font-family: 'Arial', sans-serif;
15
- font-weight: bold;
16
- }
17
- .header {
18
- font-size: 28px;
19
- font-family: 'Arial', sans-serif;
20
- color: black; /* Black for headings */
21
- font-style: italic;
22
- font-weight: bold;
23
- }
24
- .content {
25
- font-size: 16px;
26
- font-family: 'Arial', sans-serif;
27
- color: blue; /* Blue for text */
28
- font-style: italic;
29
- }
30
- </style>
31
- """,
32
- unsafe_allow_html=True,
33
- )
34
-
35
- # Main content
36
- st.markdown("<div class='title'>General Algorithm</div><br>", unsafe_allow_html=True)
37
- st.markdown("<div class='content'>At the time of training, the machine requires two things: Data & Algorithm.</div>", unsafe_allow_html=True)
38
-
39
- st.markdown("<div class='header'>Basic Steps</div><br>", unsafe_allow_html=True)
40
- st.markdown("<div class='content'>1. While guiding the machine, the main guidance comes from how we preprocess our data and choose the algorithm.</div>", unsafe_allow_html=True)
41
- st.markdown("<div class='content'>2. If we preprocess the data incorrectly and choose the wrong algorithm, it leads to bad model performance.</div>", unsafe_allow_html=True)
42
- st.markdown("<div class='content'>3. Inside the algorithm, there will be steps that the machine must follow while learning.</div>", unsafe_allow_html=True)
43
-
44
- st.markdown("<div class='header'>Based on the Algorithm</div><br>", unsafe_allow_html=True)
45
- st.markdown("<div class='content'>1. Identify whether the algorithm is Supervised, Unsupervised, Semi-supervised, or Reinforcement Learning.</div>", unsafe_allow_html=True)
46
- st.markdown("<div class='content'>2. If we choose Supervised Learning, we must decide between Classification or Regression based on the problem and data.</div>", unsafe_allow_html=True)
47
-
48
- st.markdown("<div class='header'>Basic Steps Before Training</div><br>", unsafe_allow_html=True)
49
- st.markdown("<div class='content'>1. When working with preprocessed tabular data, identify the feature variables and class variables.</div>", unsafe_allow_html=True)
50
- st.markdown("<div class='content'><b>Example:</b> Iris Dataset</div>", unsafe_allow_html=True)
51
- st.markdown("<div class='content'><b>Feature Variables:</b> Sepal Length, Sepal Width, Petal Length, Petal Width</div>", unsafe_allow_html=True)
52
- st.markdown("<div class='content'><b>Class Variable:</b> Species</div>", unsafe_allow_html=True)
53
-
54
- st.markdown("<div class='content'>2. Divide the entire data into feature variables and class variables.</div>", unsafe_allow_html=True)
55
- st.markdown("<div class='content'>3. Now split the data into Training Set (DTrain) and Test Set (DTest).</div>", unsafe_allow_html=True)
56
-
57
- st.markdown("<div class='header'>Conditions</div><br>", unsafe_allow_html=True)
58
- st.markdown("<div class='content'>1. Majority of the data should be in DTrain.</div>", unsafe_allow_html=True)
59
- st.markdown("<div class='content'>2. Minority of the data should be in DTest.</div>", unsafe_allow_html=True)
60
- st.markdown("<div class='content'>3. Common splits are 80:20, 70:30, or 60:40.</div>", unsafe_allow_html=True)
61
- st.markdown("<div class='content'>4. No single data point should be in both DTrain and DTest.</div>", unsafe_allow_html=True)
62
- st.markdown("<div class='content'>5. The split should be random, without replacement.</div>", unsafe_allow_html=True)
63
- st.markdown("<div class='content'>6. Each data point should have an equal probability of selection.</div>", unsafe_allow_html=True)
64
-
65
- # KNN Algorithm Button
66
- if st.button("KNN Algorithm"):
67
- st.switch_page("pages/KNN Alogrithm.py")