Sathwikchowdary commited on
Commit
5216964
·
verified ·
1 Parent(s): b070d6e

Update pages/Life_cycle_of_ML.py

Browse files
Files changed (1) hide show
  1. pages/Life_cycle_of_ML.py +23 -8
pages/Life_cycle_of_ML.py CHANGED
@@ -2,27 +2,42 @@ import streamlit as st
2
 
3
  # HTML content inside a string for correct syntax
4
  html_content = """
5
- # Shapes in Markdown
6
 
7
- ## Rectangle
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  <div style="width: 200px; height: 100px; background-color: lightblue;"></div>
9
 
10
- ## Circle
11
  <div style="width: 100px; height: 100px; border-radius: 50%; background-color: lightcoral;"></div>
12
 
13
- ## Ellipse
14
  <div style="width: 200px; height: 100px; border-radius: 50%; background-color: lightgreen;"></div>
15
 
16
- ## SVG Shapes
 
17
  <svg width="300" height="200">
18
- <!-- Rectangle -->
19
  <rect x="10" y="10" width="100" height="50" style="fill:lightblue;stroke:black;stroke-width:2" />
20
- <!-- Circle -->
21
  <circle cx="200" cy="50" r="40" style="fill:lightcoral;stroke:black;stroke-width:2" />
22
- <!-- Ellipse -->
23
  <ellipse cx="200" cy="150" rx="85" ry="55" style="fill:lightgreen;stroke:black;stroke-width:2" />
24
  </svg>
25
  """
26
 
27
  # Render HTML content in Streamlit
28
  st.markdown(html_content, unsafe_allow_html=True)
 
 
2
 
3
  # HTML content inside a string for correct syntax
4
  html_content = """
5
+ # Life Cycle of ML
6
 
7
+ The life cycle of Machine Learning (ML) involves several stages, from defining the problem to deploying the model. Here's an overview of each stage:
8
+
9
+ 1. **Problem Definition:** Understanding the problem to define the goals and objectives of the ML model.
10
+ 2. **Data Collection:** Gathering relevant data required to train the model.
11
+ 3. **Data Preprocessing:** Cleaning and transforming the data into a usable format.
12
+ 4. **Model Building:** Building and training machine learning models using the processed data.
13
+ 5. **Evaluation:** Evaluating the performance of the model and adjusting it as needed.
14
+ 6. **Deployment:** Deploying the model into a production environment.
15
+
16
+ ---
17
+
18
+ ## Shapes Representing the ML Life Cycle
19
+
20
+ ### Rectangle: Problem Definition
21
  <div style="width: 200px; height: 100px; background-color: lightblue;"></div>
22
 
23
+ ### Circle: Data Collection
24
  <div style="width: 100px; height: 100px; border-radius: 50%; background-color: lightcoral;"></div>
25
 
26
+ ### Ellipse: Data Preprocessing
27
  <div style="width: 200px; height: 100px; border-radius: 50%; background-color: lightgreen;"></div>
28
 
29
+ ### SVG Shapes Representing ML Life Cycle
30
+
31
  <svg width="300" height="200">
32
+ <!-- Rectangle: Problem Definition -->
33
  <rect x="10" y="10" width="100" height="50" style="fill:lightblue;stroke:black;stroke-width:2" />
34
+ <!-- Circle: Data Collection -->
35
  <circle cx="200" cy="50" r="40" style="fill:lightcoral;stroke:black;stroke-width:2" />
36
+ <!-- Ellipse: Data Preprocessing -->
37
  <ellipse cx="200" cy="150" rx="85" ry="55" style="fill:lightgreen;stroke:black;stroke-width:2" />
38
  </svg>
39
  """
40
 
41
  # Render HTML content in Streamlit
42
  st.markdown(html_content, unsafe_allow_html=True)
43
+