Spaces:
Sleeping
Sleeping
Update pages/Life_cycle_of_ML.py
Browse files
pages/Life_cycle_of_ML.py
CHANGED
@@ -93,19 +93,19 @@ ml_lifecycle = [
|
|
93 |
{
|
94 |
"title": "1️⃣ **Problem Statement**",
|
95 |
"description": """
|
96 |
-
|
97 |
"""
|
98 |
},
|
99 |
{
|
100 |
"title": "2️⃣ **Data Collection**",
|
101 |
"description": """
|
102 |
-
|
103 |
"""
|
104 |
},
|
105 |
{
|
106 |
"title": "3️⃣ **Data Preparation**",
|
107 |
"description": """
|
108 |
-
|
109 |
- Steps:
|
110 |
- Handle missing values and outliers.
|
111 |
- Normalize or scale numerical features.
|
@@ -117,7 +117,7 @@ ml_lifecycle = [
|
|
117 |
{
|
118 |
"title": "4️⃣ **Feature Engineering**",
|
119 |
"description": """
|
120 |
-
|
121 |
- Techniques:
|
122 |
- Feature Selection: Choose the most important columns (e.g., using correlation).
|
123 |
- Feature Creation: Combine or transform existing features.
|
@@ -126,7 +126,7 @@ ml_lifecycle = [
|
|
126 |
{
|
127 |
"title": "5️⃣ **Model Selection**",
|
128 |
"description": """
|
129 |
-
|
130 |
- Factors to consider:
|
131 |
- Problem type: Classification, Regression, Clustering, etc.
|
132 |
- Data size and structure.
|
@@ -135,7 +135,7 @@ ml_lifecycle = [
|
|
135 |
{
|
136 |
"title": "6️⃣ **Training**",
|
137 |
"description": """
|
138 |
-
|
139 |
- Process:
|
140 |
- Split data into training and validation sets.
|
141 |
- Use the training data to fit the model.
|
@@ -144,7 +144,7 @@ ml_lifecycle = [
|
|
144 |
{
|
145 |
"title": "7️⃣ **Evaluation**",
|
146 |
"description": """
|
147 |
-
|
148 |
- Metrics:
|
149 |
- Classification: Accuracy, Precision, Recall, F1-Score.
|
150 |
- Regression: Mean Squared Error (MSE), R² Score.
|
@@ -153,7 +153,7 @@ ml_lifecycle = [
|
|
153 |
{
|
154 |
"title": "8️⃣ **Deployment**",
|
155 |
"description": """
|
156 |
-
|
157 |
- Steps:
|
158 |
- Create an API for model predictions.
|
159 |
- Monitor performance on real-world data.
|
@@ -162,7 +162,7 @@ ml_lifecycle = [
|
|
162 |
{
|
163 |
"title": "9️⃣ **Monitoring & Maintenance**",
|
164 |
"description": """
|
165 |
-
|
166 |
- Monitor:
|
167 |
- Data drift: Changes in data distribution.
|
168 |
- Model decay: Performance deterioration.
|
|
|
93 |
{
|
94 |
"title": "1️⃣ **Problem Statement**",
|
95 |
"description": """
|
96 |
+
****:Understanding the problem and setting objectives for the ML model.
|
97 |
"""
|
98 |
},
|
99 |
{
|
100 |
"title": "2️⃣ **Data Collection**",
|
101 |
"description": """
|
102 |
+
****:Gathering relevant data for model training.
|
103 |
"""
|
104 |
},
|
105 |
{
|
106 |
"title": "3️⃣ **Data Preparation**",
|
107 |
"description": """
|
108 |
+
****: Initial analysis to understand the dataset's basic properties.
|
109 |
- Steps:
|
110 |
- Handle missing values and outliers.
|
111 |
- Normalize or scale numerical features.
|
|
|
117 |
{
|
118 |
"title": "4️⃣ **Feature Engineering**",
|
119 |
"description": """
|
120 |
+
****:Select or create the most relevant features for the model.
|
121 |
- Techniques:
|
122 |
- Feature Selection: Choose the most important columns (e.g., using correlation).
|
123 |
- Feature Creation: Combine or transform existing features.
|
|
|
126 |
{
|
127 |
"title": "5️⃣ **Model Selection**",
|
128 |
"description": """
|
129 |
+
****:Choose the right ML algorithm for your problem.
|
130 |
- Factors to consider:
|
131 |
- Problem type: Classification, Regression, Clustering, etc.
|
132 |
- Data size and structure.
|
|
|
135 |
{
|
136 |
"title": "6️⃣ **Training**",
|
137 |
"description": """
|
138 |
+
****: Train the ML model using training data.
|
139 |
- Process:
|
140 |
- Split data into training and validation sets.
|
141 |
- Use the training data to fit the model.
|
|
|
144 |
{
|
145 |
"title": "7️⃣ **Evaluation**",
|
146 |
"description": """
|
147 |
+
****: Assess the model's performance using metrics.
|
148 |
- Metrics:
|
149 |
- Classification: Accuracy, Precision, Recall, F1-Score.
|
150 |
- Regression: Mean Squared Error (MSE), R² Score.
|
|
|
153 |
{
|
154 |
"title": "8️⃣ **Deployment**",
|
155 |
"description": """
|
156 |
+
****: Integrate the trained model into a production environment.
|
157 |
- Steps:
|
158 |
- Create an API for model predictions.
|
159 |
- Monitor performance on real-world data.
|
|
|
162 |
{
|
163 |
"title": "9️⃣ **Monitoring & Maintenance**",
|
164 |
"description": """
|
165 |
+
****:Ensure the model continues to perform well over time.
|
166 |
- Monitor:
|
167 |
- Data drift: Changes in data distribution.
|
168 |
- Model decay: Performance deterioration.
|