Sathwikchowdary commited on
Commit
823ed64
·
verified ·
1 Parent(s): f107edf

Update pages/Life_cycle_of_ML.py

Browse files
Files changed (1) hide show
  1. pages/Life_cycle_of_ML.py +9 -9
pages/Life_cycle_of_ML.py CHANGED
@@ -93,19 +93,19 @@ ml_lifecycle = [
93
  {
94
  "title": "1️⃣ **Problem Statement**",
95
  "description": """
96
- **Understanding the problem and setting objectives for the ML model.
97
  """
98
  },
99
  {
100
  "title": "2️⃣ **Data Collection**",
101
  "description": """
102
- **Gathering relevant data for model training.
103
  """
104
  },
105
  {
106
  "title": "3️⃣ **Data Preparation**",
107
  "description": """
108
- ** Initial analysis to understand the dataset's basic properties.
109
  - Steps:
110
  - Handle missing values and outliers.
111
  - Normalize or scale numerical features.
@@ -117,7 +117,7 @@ ml_lifecycle = [
117
  {
118
  "title": "4️⃣ **Feature Engineering**",
119
  "description": """
120
- **Select or create the most relevant features for the model.
121
  - Techniques:
122
  - Feature Selection: Choose the most important columns (e.g., using correlation).
123
  - Feature Creation: Combine or transform existing features.
@@ -126,7 +126,7 @@ ml_lifecycle = [
126
  {
127
  "title": "5️⃣ **Model Selection**",
128
  "description": """
129
- ** Choose the right ML algorithm for your problem.
130
  - Factors to consider:
131
  - Problem type: Classification, Regression, Clustering, etc.
132
  - Data size and structure.
@@ -135,7 +135,7 @@ ml_lifecycle = [
135
  {
136
  "title": "6️⃣ **Training**",
137
  "description": """
138
- ** Train the ML model using training data.
139
  - Process:
140
  - Split data into training and validation sets.
141
  - Use the training data to fit the model.
@@ -144,7 +144,7 @@ ml_lifecycle = [
144
  {
145
  "title": "7️⃣ **Evaluation**",
146
  "description": """
147
- ** Assess the model's performance using metrics.
148
  - Metrics:
149
  - Classification: Accuracy, Precision, Recall, F1-Score.
150
  - Regression: Mean Squared Error (MSE), R² Score.
@@ -153,7 +153,7 @@ ml_lifecycle = [
153
  {
154
  "title": "8️⃣ **Deployment**",
155
  "description": """
156
- ** Integrate the trained model into a production environment.
157
  - Steps:
158
  - Create an API for model predictions.
159
  - Monitor performance on real-world data.
@@ -162,7 +162,7 @@ ml_lifecycle = [
162
  {
163
  "title": "9️⃣ **Monitoring & Maintenance**",
164
  "description": """
165
- **Ensure the model continues to perform well over time.
166
  - Monitor:
167
  - Data drift: Changes in data distribution.
168
  - Model decay: Performance deterioration.
 
93
  {
94
  "title": "1️⃣ **Problem Statement**",
95
  "description": """
96
+ ****:Understanding the problem and setting objectives for the ML model.
97
  """
98
  },
99
  {
100
  "title": "2️⃣ **Data Collection**",
101
  "description": """
102
+ ****:Gathering relevant data for model training.
103
  """
104
  },
105
  {
106
  "title": "3️⃣ **Data Preparation**",
107
  "description": """
108
+ ****: Initial analysis to understand the dataset's basic properties.
109
  - Steps:
110
  - Handle missing values and outliers.
111
  - Normalize or scale numerical features.
 
117
  {
118
  "title": "4️⃣ **Feature Engineering**",
119
  "description": """
120
+ ****:Select or create the most relevant features for the model.
121
  - Techniques:
122
  - Feature Selection: Choose the most important columns (e.g., using correlation).
123
  - Feature Creation: Combine or transform existing features.
 
126
  {
127
  "title": "5️⃣ **Model Selection**",
128
  "description": """
129
+ ****:Choose the right ML algorithm for your problem.
130
  - Factors to consider:
131
  - Problem type: Classification, Regression, Clustering, etc.
132
  - Data size and structure.
 
135
  {
136
  "title": "6️⃣ **Training**",
137
  "description": """
138
+ ****: Train the ML model using training data.
139
  - Process:
140
  - Split data into training and validation sets.
141
  - Use the training data to fit the model.
 
144
  {
145
  "title": "7️⃣ **Evaluation**",
146
  "description": """
147
+ ****: Assess the model's performance using metrics.
148
  - Metrics:
149
  - Classification: Accuracy, Precision, Recall, F1-Score.
150
  - Regression: Mean Squared Error (MSE), R² Score.
 
153
  {
154
  "title": "8️⃣ **Deployment**",
155
  "description": """
156
+ ****: Integrate the trained model into a production environment.
157
  - Steps:
158
  - Create an API for model predictions.
159
  - Monitor performance on real-world data.
 
162
  {
163
  "title": "9️⃣ **Monitoring & Maintenance**",
164
  "description": """
165
+ ****:Ensure the model continues to perform well over time.
166
  - Monitor:
167
  - Data drift: Changes in data distribution.
168
  - Model decay: Performance deterioration.