Spaces:
Sleeping
Sleeping
Update pages/Info _of_Image.py
Browse files- pages/Info _of_Image.py +56 -611
pages/Info _of_Image.py
CHANGED
@@ -23,620 +23,65 @@ custom_css = """
|
|
23 |
p {
|
24 |
color: #FFFFFF; /* White text for paragraphs */
|
25 |
}
|
26 |
-
.stButton>button {
|
27 |
-
background-color: #4CAF50; /* Green */
|
28 |
-
color: white;
|
29 |
-
padding: 10px 24px;
|
30 |
-
border: none;
|
31 |
-
border-radius: 5px;
|
32 |
-
text-align: center;
|
33 |
-
font-size: 16px;
|
34 |
-
margin: 4px 2px;
|
35 |
-
transition-duration: 0.4s;
|
36 |
-
cursor: pointer;
|
37 |
-
}
|
38 |
-
.stButton>button:hover {
|
39 |
-
background-color: #45a049; /* Darker Green on hover */
|
40 |
-
color: white;
|
41 |
-
}
|
42 |
-
.stButton>div:nth-child(1)>button {
|
43 |
-
background-color: #2196F3; /* Blue */
|
44 |
-
}
|
45 |
-
.stButton>div:nth-child(2)>button {
|
46 |
-
background-color: #f44336; /* Red */
|
47 |
-
}
|
48 |
-
.stButton>div:nth-child(3)>button {
|
49 |
-
background-color: #FF9800; /* Orange */
|
50 |
-
}
|
51 |
</style>
|
52 |
"""
|
53 |
|
54 |
# Inject the CSS into the app
|
55 |
-
st.markdown(
|
56 |
-
|
57 |
st.markdown(
|
58 |
-
""
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
<
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
<
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
)
|
109 |
-
if st.button("Next Page: Basic operations on an Image"):
|
110 |
-
st.session_state['page'] = 'image_operations'
|
111 |
-
|
112 |
-
if page == 'image_operations':
|
113 |
-
st.markdown("<div class='title'>Basic Operations on an Image</div>", unsafe_allow_html=True)
|
114 |
-
st.markdown(
|
115 |
-
"""
|
116 |
-
<div class="section">
|
117 |
-
<div class="header">Operations on image data</div>
|
118 |
-
<div class="content">There are 3 major operations which can be performed on an image namely:<br>
|
119 |
-
1) Reading an image<br>
|
120 |
-
2) Writing an image<br>
|
121 |
-
3) Showing an image
|
122 |
-
</div>
|
123 |
-
<div class="section">
|
124 |
-
<div class="header">Reading an image</div>
|
125 |
-
<div class="content">
|
126 |
-
For this operation, we have to import <code>cv2</code> module and use the method <code>imread()</code>.
|
127 |
-
The method <code>imread()</code> is used to convert an image file into a numpy array.
|
128 |
-
</div>
|
129 |
-
</div>
|
130 |
-
<div class="section">
|
131 |
-
<div class="header">Writing an image</div>
|
132 |
-
<div class="content">
|
133 |
-
For this operation, we have to import <code>cv2</code> module and use the method <code>imwrite()</code>.
|
134 |
-
The method <code>imwrite()</code> is used to convert a numpy array back into an image file.
|
135 |
-
</div>
|
136 |
-
</div>
|
137 |
-
<div class="section">
|
138 |
-
<div class="header">Showing an image</div>
|
139 |
-
<div class="content">
|
140 |
-
For this operation, we have to import <code>cv2</code> module and use the method <code>imshow()</code>.
|
141 |
-
The method <code>imshow()</code> is used to display an array in the form of an image by creating a popup window.
|
142 |
-
</div>
|
143 |
-
</div><br><br>
|
144 |
-
""",
|
145 |
-
unsafe_allow_html=True,
|
146 |
-
)
|
147 |
-
col1, col2 = st.columns(2)
|
148 |
-
with col1:
|
149 |
-
if st.button("Open Jupyter Notebook"):
|
150 |
-
st.session_state['jupyter_clicked'] = True
|
151 |
-
st.session_state['pdf_clicked'] = False
|
152 |
-
with col2:
|
153 |
-
if st.button("Open PDF"):
|
154 |
-
st.session_state['pdf_clicked'] = True
|
155 |
-
st.session_state['jupyter_clicked'] = False
|
156 |
-
|
157 |
-
if st.session_state['jupyter_clicked']:
|
158 |
-
st.markdown(
|
159 |
-
"""
|
160 |
-
<div class="section">
|
161 |
-
<div class="header">Jupyter Notebook for Basic Operations on an Image </div>
|
162 |
-
<div class="content">This Jupyter notebook explains the basic operations that can be performed on an image.</div>
|
163 |
-
</div>
|
164 |
-
""",
|
165 |
-
unsafe_allow_html=True,
|
166 |
-
)
|
167 |
-
# Embed the converted HTML file for the notebook
|
168 |
-
notebook_html_path = "pages/basic_img_ops.html"
|
169 |
-
with open(notebook_html_path, "r") as f:
|
170 |
-
notebook_html = f.read()
|
171 |
-
st.components.v1.html(notebook_html, height=500, scrolling=True)
|
172 |
-
|
173 |
-
elif st.session_state['pdf_clicked']:
|
174 |
-
st.markdown(
|
175 |
-
"""
|
176 |
-
<div class="section">
|
177 |
-
<div class="header">PDF file for Basic Operations on an Image</div>
|
178 |
-
<div class="content">This PDFfile explains the basic operations that can be performed on an image.</div>
|
179 |
-
</div>
|
180 |
-
""",
|
181 |
-
unsafe_allow_html=True,
|
182 |
-
)
|
183 |
-
|
184 |
-
pdf_path = "pages/basic_img_ops.pdf"
|
185 |
-
|
186 |
-
# Read the PDF file content (binary data)
|
187 |
-
with open(pdf_path, "rb") as file:
|
188 |
-
pdf_data = file.read() # This is the binary data of the PDF file
|
189 |
-
|
190 |
-
# Display the PDF in an iframe
|
191 |
-
st.markdown(
|
192 |
-
f'<iframe src="data:application/pdf;base64,{base64.b64encode(pdf_data).decode()}" width="100%" height="600px"></iframe>',
|
193 |
-
unsafe_allow_html=True,
|
194 |
-
)
|
195 |
-
|
196 |
-
# Provide download option for the PDF file
|
197 |
-
st.download_button(
|
198 |
-
label="Download PDF",
|
199 |
-
data=pdf_data, # Provide the binary file data here
|
200 |
-
file_name="basic_img_ops.pdf", # This is the name that will appear when the user downloads the file
|
201 |
-
mime="application/pdf"
|
202 |
-
)
|
203 |
-
if st.button("Next Page: Working on the Image"):
|
204 |
-
st.session_state['page'] = 'image_working'
|
205 |
-
|
206 |
-
elif page == 'image_working':
|
207 |
-
st.markdown("<div class='title'>Working on the Image</div>", unsafe_allow_html=True)
|
208 |
-
st.markdown(
|
209 |
-
"""
|
210 |
-
<div class="section">
|
211 |
-
<div class="header">Understanding split() method</div>
|
212 |
-
<div class="content">
|
213 |
-
For this operation, we have to import <code>cv2</code> module and use the method <code>split()</code>.<br><br>
|
214 |
-
The <code>split()</code> method is used to separate a multi-channel image into its individual single-channel components.<br>
|
215 |
-
</div>
|
216 |
-
<div class="section">
|
217 |
-
<div class="header">Understanding merge() method</div>
|
218 |
-
<div class="content">
|
219 |
-
For this operation, we have to import <code>cv2</code> module and use the method <code>merge()</code>.<br><br>
|
220 |
-
The <code>merge()</code> method is used to combine multiple single-channel images into a single multi-channel image.<br><br>
|
221 |
-
</div>
|
222 |
-
</div><br><br>
|
223 |
-
""",
|
224 |
-
unsafe_allow_html=True,
|
225 |
-
)
|
226 |
-
col1, col2 = st.columns(2)
|
227 |
-
with col1:
|
228 |
-
if st.button("Open Jupyter Notebook"):
|
229 |
-
st.session_state['jupyter_clicked'] = True
|
230 |
-
st.session_state['pdf_clicked'] = False
|
231 |
-
with col2:
|
232 |
-
if st.button("Open PDF"):
|
233 |
-
st.session_state['pdf_clicked'] = True
|
234 |
-
st.session_state['jupyter_clicked'] = False
|
235 |
-
|
236 |
-
if st.session_state['jupyter_clicked']:
|
237 |
-
st.markdown(
|
238 |
-
"""
|
239 |
-
<div class="section">
|
240 |
-
<div class="header">Jupyter Notebook for Basic Operations on an Image </div>
|
241 |
-
<div class="content">This Jupyter notebook explains the split and merge methods that can be performed on an image.</div>
|
242 |
-
</div>
|
243 |
-
""",
|
244 |
-
unsafe_allow_html=True,
|
245 |
-
)
|
246 |
-
# Embed the converted HTML file for the notebook
|
247 |
-
notebook_html_path = "pages/working_on_img.html"
|
248 |
-
with open(notebook_html_path, "r") as f:
|
249 |
-
notebook_html = f.read()
|
250 |
-
st.components.v1.html(notebook_html, height=500, scrolling=True)
|
251 |
-
|
252 |
-
elif st.session_state['pdf_clicked']:
|
253 |
-
st.markdown(
|
254 |
-
"""
|
255 |
-
<div class="section">
|
256 |
-
<div class="header">PDF file for Basic Operations on an Image</div>
|
257 |
-
<div class="content">This PDF file explains the split and merge methods that can be performed on an image.</div>
|
258 |
-
</div>
|
259 |
-
""",
|
260 |
-
unsafe_allow_html=True,
|
261 |
-
)
|
262 |
-
|
263 |
-
pdf_path = "pages/working_on_img.pdf"
|
264 |
-
|
265 |
-
# Read the PDF file content (binary data)
|
266 |
-
with open(pdf_path, "rb") as file:
|
267 |
-
pdf_data = file.read() # This is the binary data of the PDF file
|
268 |
-
|
269 |
-
# Display the PDF in an iframe
|
270 |
-
st.markdown(
|
271 |
-
f'<iframe src="data:application/pdf;base64,{base64.b64encode(pdf_data).decode()}" width="100%" height="600px"></iframe>',
|
272 |
-
unsafe_allow_html=True,
|
273 |
-
)
|
274 |
-
|
275 |
-
# Provide download option for the PDF file
|
276 |
-
st.download_button(
|
277 |
-
label="Download PDF",
|
278 |
-
data=pdf_data, # Provide the binary file data here
|
279 |
-
file_name="working_on_img.pdf", # This is the name that will appear when the user downloads the file
|
280 |
-
mime="application/pdf"
|
281 |
-
)
|
282 |
-
if st.button("Next Page: Conversion between Color Spaces"):
|
283 |
-
st.session_state['page'] = 'color_space_conversion_on_img'
|
284 |
-
|
285 |
-
elif page == 'color_space_conversion_on_img':
|
286 |
-
st.markdown("<div class='title'>Conversion between Color Spaces</div>", unsafe_allow_html=True)
|
287 |
-
st.markdown(
|
288 |
-
"""
|
289 |
-
<div class="section">
|
290 |
-
<div class="header">How to convert one color space to another?</div>
|
291 |
-
<div class="content">
|
292 |
-
In the <code>cv2</code> module, we have an in-built method called <code>cvtColor()</code>
|
293 |
-
along with in-built parameters for each conversion.<br><br>
|
294 |
-
1) For converting BGR to Grayscale,
|
295 |
-
We use the parameter <code>COLOR_BGR2GRAY</code> inside the <code>cvtColor()</code> method.<br><br>
|
296 |
-
2) For converting Grayscale to BGR,
|
297 |
-
We use the parameter <code>COLOR_GRAY2BGR</code> inside the <code>cvtColor()</code> method.<br><br>
|
298 |
-
3) For converting BGR to RGB,
|
299 |
-
We use the parameter <code>COLOR_BGR2RGB</code> inside the <code>cvtColor()</code> method.<br><br>
|
300 |
-
</div>
|
301 |
-
</div><br><br>
|
302 |
-
""",
|
303 |
-
unsafe_allow_html=True,
|
304 |
-
)
|
305 |
-
col1, col2 = st.columns(2)
|
306 |
-
with col1:
|
307 |
-
if st.button("Open Jupyter Notebook"):
|
308 |
-
st.session_state['jupyter_clicked'] = True
|
309 |
-
st.session_state['pdf_clicked'] = False
|
310 |
-
with col2:
|
311 |
-
if st.button("Open PDF"):
|
312 |
-
st.session_state['pdf_clicked'] = True
|
313 |
-
st.session_state['jupyter_clicked'] = False
|
314 |
-
|
315 |
-
if st.session_state['jupyter_clicked']:
|
316 |
-
st.markdown(
|
317 |
-
"""
|
318 |
-
<div class="section">
|
319 |
-
<div class="header">Jupyter Notebook for Basic Operations on an Image </div>
|
320 |
-
<div class="content">This Jupyter notebook explains the split and merge methods that can be performed on an image.</div>
|
321 |
-
</div>
|
322 |
-
""",
|
323 |
-
unsafe_allow_html=True,
|
324 |
-
)
|
325 |
-
# Embed the converted HTML file for the notebook
|
326 |
-
notebook_html_path = "pages/converting_color_spaces.html"
|
327 |
-
with open(notebook_html_path, "r") as f:
|
328 |
-
notebook_html = f.read()
|
329 |
-
st.components.v1.html(notebook_html, height=500, scrolling=True)
|
330 |
-
|
331 |
-
elif st.session_state['pdf_clicked']:
|
332 |
-
st.markdown(
|
333 |
-
"""
|
334 |
-
<div class="section">
|
335 |
-
<div class="header">PDF file for Basic Operations on an Image</div>
|
336 |
-
<div class="content">This PDF file explains the split and merge methods that can be performed on an image.</div>
|
337 |
-
</div>
|
338 |
-
""",
|
339 |
-
unsafe_allow_html=True,
|
340 |
-
)
|
341 |
-
|
342 |
-
pdf_path = "pages/converting_color_spaces.pdf"
|
343 |
-
|
344 |
-
# Read the PDF file content (binary data)
|
345 |
-
with open(pdf_path, "rb") as file:
|
346 |
-
pdf_data = file.read() # This is the binary data of the PDF file
|
347 |
-
|
348 |
-
# Display the PDF in an iframe
|
349 |
-
st.markdown(
|
350 |
-
f'<iframe src="data:application/pdf;base64,{base64.b64encode(pdf_data).decode()}" width="100%" height="600px"></iframe>',
|
351 |
-
unsafe_allow_html=True,
|
352 |
-
)
|
353 |
-
|
354 |
-
# Provide download option for the PDF file
|
355 |
-
st.download_button(
|
356 |
-
label="Download PDF",
|
357 |
-
data=pdf_data, # Provide the binary file data here
|
358 |
-
file_name="converting_color_spaces.pdf", # This is the name that will appear when the user downloads the file
|
359 |
-
mime="application/pdf"
|
360 |
-
)
|
361 |
-
if st.button("Next Page: Affine Transformations on an Image"):
|
362 |
-
st.session_state['page'] = 'affine_transformations'
|
363 |
-
|
364 |
-
elif page == 'affine_transformations':
|
365 |
-
st.markdown("<div class='title'>Affine Transformations on an Image</div>", unsafe_allow_html=True)
|
366 |
-
st.markdown(
|
367 |
-
"""
|
368 |
-
<div class="section">
|
369 |
-
<div class="header">What are Affine Transformations?</div>
|
370 |
-
<div class="content">
|
371 |
-
Affine Transformations are a part of Image augmentation.<br>
|
372 |
-
Image augmentation is a technique of creating new images from the existing images.<br>
|
373 |
-
This technique is used to create a balance in the dataset.<br>
|
374 |
-
For a particular label, ff there are less images compared to the other label,
|
375 |
-
we increase the no. of images in that label using Image augmentation.<br><br>
|
376 |
-
Advantages of Affine Transformations include:<br>
|
377 |
-
1) We convert our imbalanced data into balanced data.<br>
|
378 |
-
2) We get new images from old ones<br><br>
|
379 |
-
</div>
|
380 |
-
<div class="header">Types of Affine Transformations?</div>
|
381 |
-
<div class="content">
|
382 |
-
There are 5 types of Affine Transformations namely:<br>
|
383 |
-
1) Translation<br>
|
384 |
-
2) Rotation<br>
|
385 |
-
3) Scaling<br>
|
386 |
-
4) Shearing<br>
|
387 |
-
5) Cropping<br><br>
|
388 |
-
</div>
|
389 |
-
<div class="header">Translation</div>
|
390 |
-
<div class="content">
|
391 |
-
It is a technique of shifting the image by some bits on the X-axis and the Y-axis.<br>
|
392 |
-
The extra bits created are replaced with black color or duplicate pixels.<br>
|
393 |
-
We apply a Translation matrix ( Tm ) for this.<br>
|
394 |
-
</div>
|
395 |
-
<div class="header">Rotation</div>
|
396 |
-
<div class="content">
|
397 |
-
It is a technique of rotating the image by at an angle from the specified position.<br>
|
398 |
-
We apply a Rotation matrix ( Rm ) for this.<br>
|
399 |
-
We can use a combination of Rotation & Translation in the same Rotation matrix ( Rm )<br>
|
400 |
-
</div>
|
401 |
-
<div class="header">Scaling</div>
|
402 |
-
<div class="content">
|
403 |
-
It is a technique of increasing or decreasing the size of the image by a particular scale.<br>
|
404 |
-
We apply a Scaling matrix ( Sm ) for this.<br>
|
405 |
-
We can use a combination of Scaling & Translation in the same Scaling matrix ( Sm )<br>
|
406 |
-
</div>
|
407 |
-
<div class="header">Shearing</div>
|
408 |
-
<div class="content">
|
409 |
-
It is a technique of stretching the image from its edges by a particular value.<br>
|
410 |
-
We apply a Shearing matrix ( Shm ) for this.<br>
|
411 |
-
We can use a combination of Shearing, Scaling & Translation in the same Shearing matrix ( Shm )<br>
|
412 |
-
</div>
|
413 |
-
<div class="header">Cropping</div>
|
414 |
-
<div class="content">
|
415 |
-
It is a technique of extracting or cutting a part of the image from the original image.<br>
|
416 |
-
We don't have a cropping matrix for this technique.<br>
|
417 |
-
Instead, we have to do it manually using slicing operation on the Numpy array.<br>
|
418 |
-
</div>
|
419 |
-
</div><br><br>
|
420 |
-
""",
|
421 |
-
unsafe_allow_html=True,
|
422 |
-
)
|
423 |
-
col1, col2 = st.columns(2)
|
424 |
-
with col1:
|
425 |
-
if st.button("Open Jupyter Notebook"):
|
426 |
-
st.session_state['jupyter_clicked'] = True
|
427 |
-
st.session_state['pdf_clicked'] = False
|
428 |
-
with col2:
|
429 |
-
if st.button("Open PDF"):
|
430 |
-
st.session_state['pdf_clicked'] = True
|
431 |
-
st.session_state['jupyter_clicked'] = False
|
432 |
-
|
433 |
-
if st.session_state['jupyter_clicked']:
|
434 |
-
st.markdown(
|
435 |
-
"""
|
436 |
-
<div class="section">
|
437 |
-
<div class="header">Jupyter Notebook for Basic Operations on an Image </div>
|
438 |
-
<div class="content">This Jupyter notebook explains all the affine transformations that can be performed on an image.</div>
|
439 |
-
</div>
|
440 |
-
""",
|
441 |
-
unsafe_allow_html=True,
|
442 |
-
)
|
443 |
-
# Embed the converted HTML file for the notebook
|
444 |
-
notebook_html_path = "pages/affine_transformations.html"
|
445 |
-
with open(notebook_html_path, "r") as f:
|
446 |
-
notebook_html = f.read()
|
447 |
-
st.components.v1.html(notebook_html, height=500, scrolling=True)
|
448 |
-
|
449 |
-
elif st.session_state['pdf_clicked']:
|
450 |
-
st.markdown(
|
451 |
-
"""
|
452 |
-
<div class="section">
|
453 |
-
<div class="header">PDF file for Basic Operations on an Image</div>
|
454 |
-
<div class="content">This PDF file explains all the affine transformations that can be performed on an image.</div>
|
455 |
-
</div>
|
456 |
-
""",
|
457 |
-
unsafe_allow_html=True,
|
458 |
-
)
|
459 |
-
|
460 |
-
pdf_path = "pages/affine_transformations.pdf"
|
461 |
-
|
462 |
-
# Read the PDF file content (binary data)
|
463 |
-
with open(pdf_path, "rb") as file:
|
464 |
-
pdf_data = file.read() # This is the binary data of the PDF file
|
465 |
-
|
466 |
-
# Display the PDF in an iframe
|
467 |
-
st.markdown(
|
468 |
-
f'<iframe src="data:application/pdf;base64,{base64.b64encode(pdf_data).decode()}" width="100%" height="600px"></iframe>',
|
469 |
-
unsafe_allow_html=True,
|
470 |
-
)
|
471 |
-
|
472 |
-
# Provide download option for the PDF file
|
473 |
-
st.download_button(
|
474 |
-
label="Download PDF",
|
475 |
-
data=pdf_data, # Provide the binary file data here
|
476 |
-
file_name="affine_transformations.pdf", # This is the name that will appear when the user downloads the file
|
477 |
-
mime="application/pdf"
|
478 |
-
)
|
479 |
-
if st.button("Next Page: Handling Video Data"):
|
480 |
-
st.session_state['page'] = 'video_data'
|
481 |
-
|
482 |
-
elif page == 'video_data':
|
483 |
-
st.markdown("<div class='title'>Handling Video Data</div>", unsafe_allow_html=True)
|
484 |
-
st.markdown(
|
485 |
-
"""
|
486 |
-
<div class="section">
|
487 |
-
<div class="header">What is a Video?</div>
|
488 |
-
<div class="content">
|
489 |
-
A video is a sequence of images, called frames, displayed rapidly one after another to create the illusion of motion.<br><br>
|
490 |
-
To deal with the video data, we import the <code>cv2</code> module and use the <code>VideoCapture()</code> method.<br><br>
|
491 |
-
<code>VideoCapture()</code> method is used to converts a video into list of frames.<br><br>
|
492 |
-
</div>
|
493 |
-
<div class="header">Playing the Video</div>
|
494 |
-
<div class="content">
|
495 |
-
If we specify a path inside <code>VideoCapture()</code> method, it reads the particular video.<br><br>
|
496 |
-
</div>
|
497 |
-
<div class="header">Live Video capturing</div>
|
498 |
-
<div class="content">
|
499 |
-
If we assign 0 inside the <code>VideoCapture()</code> method, it open the Web camera for live video capturing.<br><br>
|
500 |
-
</div><br><br>
|
501 |
-
""",
|
502 |
-
unsafe_allow_html=True,
|
503 |
-
)
|
504 |
-
col1, col2 = st.columns(2)
|
505 |
-
with col1:
|
506 |
-
if st.button("Open Jupyter Notebook"):
|
507 |
-
st.session_state['jupyter_clicked'] = True
|
508 |
-
st.session_state['pdf_clicked'] = False
|
509 |
-
with col2:
|
510 |
-
if st.button("Open PDF"):
|
511 |
-
st.session_state['pdf_clicked'] = True
|
512 |
-
st.session_state['jupyter_clicked'] = False
|
513 |
-
|
514 |
-
if st.session_state['jupyter_clicked']:
|
515 |
-
st.markdown(
|
516 |
-
"""
|
517 |
-
<div class="section">
|
518 |
-
<div class="header">Jupyter Notebook for Basic Operations on an Image </div>
|
519 |
-
<div class="content">This Jupyter notebook explains how to handle video data.</div>
|
520 |
-
</div>
|
521 |
-
""",
|
522 |
-
unsafe_allow_html=True,
|
523 |
-
)
|
524 |
-
# Embed the converted HTML file for the notebook
|
525 |
-
notebook_html_path = "pages/handling_video_data.html"
|
526 |
-
with open(notebook_html_path, "r") as f:
|
527 |
-
notebook_html = f.read()
|
528 |
-
st.components.v1.html(notebook_html, height=500, scrolling=True)
|
529 |
-
|
530 |
-
elif st.session_state['pdf_clicked']:
|
531 |
-
st.markdown(
|
532 |
-
"""
|
533 |
-
<div class="section">
|
534 |
-
<div class="header">PDF file for Basic Operations on an Image</div>
|
535 |
-
<div class="content">This PDF file explains how to handle video data.</div>
|
536 |
-
</div>
|
537 |
-
""",
|
538 |
-
unsafe_allow_html=True,
|
539 |
-
)
|
540 |
-
|
541 |
-
pdf_path = "pages/handling_video_data.pdf"
|
542 |
-
|
543 |
-
# Read the PDF file content (binary data)
|
544 |
-
with open(pdf_path, "rb") as file:
|
545 |
-
pdf_data = file.read() # This is the binary data of the PDF file
|
546 |
-
|
547 |
-
# Display the PDF in an iframe
|
548 |
-
st.markdown(
|
549 |
-
f'<iframe src="data:application/pdf;base64,{base64.b64encode(pdf_data).decode()}" width="100%" height="600px"></iframe>',
|
550 |
-
unsafe_allow_html=True,
|
551 |
-
)
|
552 |
-
|
553 |
-
# Provide download option for the PDF file
|
554 |
-
st.download_button(
|
555 |
-
label="Download PDF",
|
556 |
-
data=pdf_data, # Provide the binary file data here
|
557 |
-
file_name="handling_video_data.pdf", # This is the name that will appear when the user downloads the file
|
558 |
-
mime="application/pdf"
|
559 |
-
)
|
560 |
-
if st.button("Next Page: Interesting projects on Image & Video data"):
|
561 |
-
st.session_state['page'] = 'projects'
|
562 |
-
|
563 |
-
elif page == 'projects':
|
564 |
-
st.markdown("<div class='title'>🎥✨ Interesting Projects on Image & Video Data 🌟🖼️</div>", unsafe_allow_html=True)
|
565 |
-
st.markdown(
|
566 |
-
"""
|
567 |
-
<div class="section">
|
568 |
-
<div class="header">Converting an Image into Tabular data</div>
|
569 |
-
<div class="content">
|
570 |
-
This amazing project explains how we can convert an image into tabular data. Check this out below 👇
|
571 |
-
<br>
|
572 |
-
</div>
|
573 |
-
</div><br>
|
574 |
-
""",
|
575 |
-
unsafe_allow_html=True,
|
576 |
-
)
|
577 |
-
if st.button("Go to Project 1"):
|
578 |
-
js = "window.open('https://github.com/ChaitanyaSubhakar/Handling-Image-and-Video/blob/main/converting_image_into_tabular_data.ipynb')"
|
579 |
-
st.components.v1.html(f"<script>{js}</script>", height=0)
|
580 |
-
st.markdown(
|
581 |
-
"""
|
582 |
-
<div class="section">
|
583 |
-
<div class="header">Converting a Video into Tabular data</div>
|
584 |
-
<div class="content">
|
585 |
-
This amazing project explains how we can convert a video into tabular data. Check this out below 👇
|
586 |
-
<br>
|
587 |
-
</div>
|
588 |
-
</div><br>
|
589 |
-
""",
|
590 |
-
unsafe_allow_html=True,
|
591 |
-
)
|
592 |
-
if st.button("Go to Project 2"):
|
593 |
-
js = "window.open('https://github.com/ChaitanyaSubhakar/Handling-Image-and-Video/blob/main/converting_videos_into_tabular_data.ipynb')"
|
594 |
-
st.components.v1.html(f"<script>{js}</script>", height=0)
|
595 |
-
st.markdown(
|
596 |
-
"""
|
597 |
-
<div class="section">
|
598 |
-
<div class="header">Animation Project</div>
|
599 |
-
<div class="content">
|
600 |
-
This amazing project explains how we can create interesting Animation videos using OpenCV package. Check this out below 👇
|
601 |
-
<br>
|
602 |
-
</div>
|
603 |
-
</div><br>
|
604 |
-
""",
|
605 |
-
unsafe_allow_html=True,
|
606 |
-
)
|
607 |
-
if st.button("Go to Project 3"):
|
608 |
-
js = "window.open('https://github.com/ChaitanyaSubhakar/Handling-Image-and-Video/blob/main/animation_project_opencv.ipynb')"
|
609 |
-
st.components.v1.html(f"<script>{js}</script>", height=0)
|
610 |
-
st.markdown(
|
611 |
-
"""
|
612 |
-
<div class="section">
|
613 |
-
<div class="header">GIF Project</div>
|
614 |
-
<div class="content">
|
615 |
-
This amazing project explains how we can create an interesting GIF using OpenCV package. Check this out below 👇
|
616 |
-
<br>
|
617 |
-
</div>
|
618 |
-
</div><br>
|
619 |
-
""",
|
620 |
-
unsafe_allow_html=True,
|
621 |
-
)
|
622 |
-
if st.button("Go to Project 4"):
|
623 |
-
js = "window.open('https://github.com/ChaitanyaSubhakar/Handling-Image-and-Video/blob/main/GIF_project.ipynb')"
|
624 |
-
st.components.v1.html(f"<script>{js}</script>", height=0)
|
625 |
-
st.markdown(
|
626 |
-
"""
|
627 |
-
<div class="section">
|
628 |
-
<div class="header">Cropping Tool</div>
|
629 |
-
<div class="content">
|
630 |
-
This amazing project explains how we can create an interesting GIF using OpenCV package. Check this out below 👇
|
631 |
-
<br>
|
632 |
-
</div>
|
633 |
-
</div><br>
|
634 |
-
""",
|
635 |
-
unsafe_allow_html=True,
|
636 |
-
)
|
637 |
-
if st.button("Go to Project 5"):
|
638 |
-
js = "window.open('https://github.com/ChaitanyaSubhakar/Handling-Image-and-Video/blob/main/cropping_tool.ipynb')"
|
639 |
-
st.components.v1.html(f"<script>{js}</script>", height=0)
|
640 |
-
if st.button("Return to main page.."):
|
641 |
-
st.session_state['page'] = 'unstructured_data'
|
642 |
-
|
|
|
23 |
p {
|
24 |
color: #FFFFFF; /* White text for paragraphs */
|
25 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
</style>
|
27 |
"""
|
28 |
|
29 |
# Inject the CSS into the app
|
30 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
31 |
+
st.markdown("<h2 style='text-align: left; color: Black;'>What is IMAGE</h2>", unsafe_allow_html=True)
|
32 |
st.markdown(
|
33 |
+
"<p style='font-size: 16px; color: White; font-style: italic;'>"
|
34 |
+
"An image is a visual depiction of a subject, such as a person, object, scene, or idea, created or captured through means like photography, drawing, painting, or digital tools. It can take various forms, including photographs, illustrations, artworks, or computer-generated visuals."
|
35 |
+
"</p>",
|
36 |
+
unsafe_allow_html=True
|
37 |
+
)
|
38 |
+
st.markdown("<h2 style='text-align: left; color: Black;'>Features of IMAGE</h2>", unsafe_allow_html=True)
|
39 |
+
st.markdown(
|
40 |
+
"<p style='font-size: 16px; color: White; font-style: italic;'>"
|
41 |
+
"Pixels: Images are composed of small dots called pixels, each containing color data that together create the overall image."
|
42 |
+
"</p>",
|
43 |
+
unsafe_allow_html=True
|
44 |
+
)
|
45 |
+
st.markdown(
|
46 |
+
"<p style='font-size: 16px; color: White; font-style: italic;'>"
|
47 |
+
"File Formats: Images can be stored in different formats,"
|
48 |
+
"JPEG/JPG: Widely used for photographs and online images due to their efficient balance between quality and file size."
|
49 |
+
"PNG: Preferred for high-quality visuals or images requiring transparency, such as logos."
|
50 |
+
"GIF: Commonly utilized for basic animations or compact graphics."
|
51 |
+
"</p>",
|
52 |
+
unsafe_allow_html=True
|
53 |
+
)
|
54 |
+
st.markdown("<h2 style='text-align: left; color: Black;'>Basic Operations in IMAGE</h2>", unsafe_allow_html=True)
|
55 |
+
st.markdown(
|
56 |
+
"<p style='font-size: 16px; color: White; font-style: italic;'>"
|
57 |
+
"For performing this Basic Operations we use cv2 function from opencv library"
|
58 |
+
"cv2 is the Python module for OpenCV (Open Source Computer Vision Library), a powerful library used for computer vision and image processing tasks. It provides a wide range of tools and algorithms for analyzing and manipulating images and videos."
|
59 |
+
"</p>",
|
60 |
+
unsafe_allow_html=True
|
61 |
+
)
|
62 |
+
st.markdown("<h3 style='text-align: left; color: Black;'>Why cv2 is Used</h3>", unsafe_allow_html=True)
|
63 |
+
st.markdown(
|
64 |
+
"<p style='font-size: 16px; color: White; font-style: italic;'>"
|
65 |
+
"cv2 is used for various ways like:"
|
66 |
+
"1.Image Processing"
|
67 |
+
"2.Video Analysis"
|
68 |
+
"3.Feature Detection"
|
69 |
+
"4.Image Transformations"
|
70 |
+
"</p>",
|
71 |
+
unsafe_allow_html=True
|
72 |
+
)
|
73 |
+
st.markdown("<h3 style='text-align: left; color: Black;'>Operations Used</h3>", unsafe_allow_html=True)
|
74 |
+
st.markdown("1.imread()")
|
75 |
+
st.markdown("2.imshow()")
|
76 |
+
st.markdown("3.imwrite()")
|
77 |
+
st.markdown("4.cv2.waitkey()")
|
78 |
+
st.markdown("5.destroyallwindows()")
|
79 |
+
|
80 |
+
# Add a link to the code
|
81 |
+
st.markdown(
|
82 |
+
"<p style='font-size: 16px; color: White;'>"
|
83 |
+
"You can view and run the code in Colab: "
|
84 |
+
"<a href='https://colab.research.google.com/drive/1fvP-k70HJnp1iCN7Vs-tkfFs8vq--WGc?usp=sharing' target='_blank' style='color: #FFD700;'>Colab Notebook</a>"
|
85 |
+
"</p>",
|
86 |
+
unsafe_allow_html=True
|
87 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|