Sathwikchowdary commited on
Commit
d5dd230
·
verified ·
1 Parent(s): 72daeed

Update pages/Life_cycle_of_ML.py

Browse files
Files changed (1) hide show
  1. pages/Life_cycle_of_ML.py +0 -27
pages/Life_cycle_of_ML.py CHANGED
@@ -88,30 +88,3 @@ The life cycle of Machine Learning (ML) involves several stages, from defining t
88
 
89
  # Render HTML content in Streamlit
90
  st.markdown(html_content, unsafe_allow_html=True)
91
-
92
- # Display the diagram
93
- st.markdown(html_content, unsafe_allow_html=True)
94
-
95
- # Add buttons for interaction
96
- st.subheader("Interactive ML Life Cycle")
97
-
98
- if st.button("Problem Statement"):
99
- st.write("Understanding the problem and setting objectives for the ML model.")
100
- if st.button("Data Collection"):
101
- st.write("Gathering relevant data for model training.")
102
- if st.button("Simple EDA"):
103
- st.write("Initial analysis to understand the dataset's basic properties.")
104
- if st.button("Data Preprocessing"):
105
- st.write("Cleaning the data to ensure it's in a usable format.")
106
- if st.button("EDA"):
107
- st.write("Deeper analysis to gain insights and find patterns in the data.")
108
- if st.button("Feature Engineering"):
109
- st.write("Creating new features or modifying existing ones to improve model performance.")
110
- if st.button("Training"):
111
- st.write("Training machine learning models using the processed data.")
112
- if st.button("Testing"):
113
- st.write("Evaluating the trained model using a test set to assess its performance.")
114
- if st.button("Deploying"):
115
- st.write("Deploying the model to a production environment.")
116
- if st.button("Monitoring"):
117
- st.write("Continuously monitoring the model's performance in the production environment.")
 
88
 
89
  # Render HTML content in Streamlit
90
  st.markdown(html_content, unsafe_allow_html=True)