Spaces:
Sleeping
Sleeping
Update pages/Life_cycle_of_ML.py
Browse files- pages/Life_cycle_of_ML.py +24 -50
pages/Life_cycle_of_ML.py
CHANGED
@@ -9,89 +9,63 @@ ml_lifecycle = [
|
|
9 |
{
|
10 |
"title": "1️⃣ **Problem Statement**",
|
11 |
"description": """
|
12 |
-
**
|
13 |
-
Understand the
|
14 |
"""
|
15 |
},
|
16 |
{
|
17 |
"title": "2️⃣ **Data Collection**",
|
18 |
"description": """
|
19 |
-
**
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
},
|
25 |
{
|
26 |
-
"title": "
|
27 |
"description": """
|
28 |
-
**
|
29 |
-
- Steps:
|
30 |
-
- Handle missing values and outliers.
|
31 |
-
- Normalize or scale numerical features.
|
32 |
-
- Encode categorical data (e.g., one-hot encoding).
|
33 |
-
- Tools: Python libraries like Pandas, NumPy, or OpenCV for images.
|
34 |
-
- Example: Removing null values from a customer dataset.
|
35 |
"""
|
36 |
},
|
37 |
{
|
38 |
-
"title": "
|
39 |
"description": """
|
40 |
-
**
|
41 |
-
- Techniques:
|
42 |
-
- Feature Selection: Choose the most important columns (e.g., using correlation).
|
43 |
-
- Feature Creation: Combine or transform existing features.
|
44 |
-
- Example: Extracting 'time spent on website' as a feature from raw session logs.
|
45 |
"""
|
46 |
},
|
47 |
{
|
48 |
-
"title": "
|
49 |
"description": """
|
50 |
-
**
|
51 |
-
- Factors to consider:
|
52 |
-
- Problem type: Classification, Regression, Clustering, etc.
|
53 |
-
- Data size and structure.
|
54 |
-
- Example: Using Logistic Regression for binary classification (e.g., spam detection).
|
55 |
"""
|
56 |
},
|
57 |
{
|
58 |
-
"title": "
|
59 |
"description": """
|
60 |
-
**
|
61 |
-
- Process:
|
62 |
-
- Split data into training and validation sets.
|
63 |
-
- Use the training data to fit the model.
|
64 |
-
- Example: Training a Random Forest on customer purchase data.
|
65 |
"""
|
66 |
},
|
67 |
{
|
68 |
-
"title": "
|
69 |
"description": """
|
70 |
-
**
|
71 |
-
- Common Metrics:
|
72 |
-
- Classification: Accuracy, Precision, Recall, F1-Score.
|
73 |
-
- Regression: Mean Squared Error (MSE), R² Score.
|
74 |
-
- Example: Evaluating a churn prediction model using accuracy on the test set.
|
75 |
"""
|
76 |
},
|
77 |
{
|
78 |
-
"title": "
|
79 |
"description": """
|
80 |
-
**
|
81 |
-
- Steps:
|
82 |
-
- Create an API for model predictions.
|
83 |
-
- Monitor performance on real-world data.
|
84 |
-
- Example: Deploying a sentiment analysis model as a REST API.
|
85 |
"""
|
86 |
},
|
87 |
{
|
88 |
-
"title": "
|
89 |
"description": """
|
90 |
-
**
|
91 |
-
- Monitor for:
|
92 |
-
- Data drift: Changes in data distribution.
|
93 |
-
- Model decay: Performance deterioration.
|
94 |
-
- Example: Regularly retraining a sales forecasting model with new data.
|
95 |
"""
|
96 |
},
|
97 |
]
|
|
|
9 |
{
|
10 |
"title": "1️⃣ **Problem Statement**",
|
11 |
"description": """
|
12 |
+
**Info**:
|
13 |
+
Understand the challenge at hand, establish clear objectives, and set criteria for success.
|
14 |
"""
|
15 |
},
|
16 |
{
|
17 |
"title": "2️⃣ **Data Collection**",
|
18 |
"description": """
|
19 |
+
**Info**: Gather relevant data to train the model, utilizing sources such as surveys, web scraping, and APIs.
|
20 |
+
|
21 |
+
"""
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"title": "3️⃣**Simple EDA**",
|
25 |
+
"description": """
|
26 |
+
**Info**: Perform a preliminary analysis to examine the dataset’s key features.
|
27 |
"""
|
28 |
},
|
29 |
{
|
30 |
+
"title": "4️⃣ **Data Preprocessing**",
|
31 |
"description": """
|
32 |
+
**Info**: Clean the data to make sure it is in an appropriate format for further analysis.
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
"""
|
34 |
},
|
35 |
{
|
36 |
+
"title": "5️⃣ **EDA**",
|
37 |
"description": """
|
38 |
+
**Info**:Conduct deeper analysis to extract valuable insights and uncover patterns within the data.
|
|
|
|
|
|
|
|
|
39 |
"""
|
40 |
},
|
41 |
{
|
42 |
+
"title": "6️⃣ **Feature Engineering**",
|
43 |
"description": """
|
44 |
+
**Info**: Develop new features or refine existing ones to enhance the model’s performance.
|
|
|
|
|
|
|
|
|
45 |
"""
|
46 |
},
|
47 |
{
|
48 |
+
"title": "7️⃣ **Training**",
|
49 |
"description": """
|
50 |
+
**Info**:Train machine learning models using the preprocessed data.
|
|
|
|
|
|
|
|
|
51 |
"""
|
52 |
},
|
53 |
{
|
54 |
+
"title": "8️⃣ **Testing**",
|
55 |
"description": """
|
56 |
+
**Info**:Assess the model’s performance using a separate test dataset to determine its effectiveness.
|
|
|
|
|
|
|
|
|
57 |
"""
|
58 |
},
|
59 |
{
|
60 |
+
"title": "9️⃣ **Deploying**",
|
61 |
"description": """
|
62 |
+
**Info**:Deploy the trained model into a production environment for real-world use.
|
|
|
|
|
|
|
|
|
63 |
"""
|
64 |
},
|
65 |
{
|
66 |
+
"title": "🔟 **Monitoring**",
|
67 |
"description": """
|
68 |
+
**Info**:Continuously track the model’s performance in production to ensure it remains effective over time
|
|
|
|
|
|
|
|
|
69 |
"""
|
70 |
},
|
71 |
]
|