Sathwikchowdary commited on
Commit
ea5c0a1
·
verified ·
1 Parent(s): 213e4d3

Update pages/Life_cycle_of_ML.py

Browse files
Files changed (1) hide show
  1. pages/Life_cycle_of_ML.py +24 -50
pages/Life_cycle_of_ML.py CHANGED
@@ -9,89 +9,63 @@ ml_lifecycle = [
9
  {
10
  "title": "1️⃣ **Problem Statement**",
11
  "description": """
12
- **Goal**:
13
- Understand the problem you are trying to solve, define the objectives, and determine the success criteria for the project.
14
  """
15
  },
16
  {
17
  "title": "2️⃣ **Data Collection**",
18
  "description": """
19
- **Goal**:
20
- Collect relevant data to train the model.
21
- - Sources: Surveys, web scraping, APIs, etc.
22
- - Example: Collecting data from customer interactions on a website.
 
 
 
 
23
  """
24
  },
25
  {
26
- "title": "3️⃣ **Data Preparation**",
27
  "description": """
28
- **Goal**: Clean and preprocess the data to make it usable.
29
- - Steps:
30
- - Handle missing values and outliers.
31
- - Normalize or scale numerical features.
32
- - Encode categorical data (e.g., one-hot encoding).
33
- - Tools: Python libraries like Pandas, NumPy, or OpenCV for images.
34
- - Example: Removing null values from a customer dataset.
35
  """
36
  },
37
  {
38
- "title": "4️⃣ **Feature Engineering**",
39
  "description": """
40
- **Goal**: Select or create the most relevant features for the model.
41
- - Techniques:
42
- - Feature Selection: Choose the most important columns (e.g., using correlation).
43
- - Feature Creation: Combine or transform existing features.
44
- - Example: Extracting 'time spent on website' as a feature from raw session logs.
45
  """
46
  },
47
  {
48
- "title": "5️⃣ **Model Selection**",
49
  "description": """
50
- **Goal**: Choose the right ML algorithm for your problem.
51
- - Factors to consider:
52
- - Problem type: Classification, Regression, Clustering, etc.
53
- - Data size and structure.
54
- - Example: Using Logistic Regression for binary classification (e.g., spam detection).
55
  """
56
  },
57
  {
58
- "title": "6️⃣ **Training**",
59
  "description": """
60
- **Goal**: Train the ML model using training data.
61
- - Process:
62
- - Split data into training and validation sets.
63
- - Use the training data to fit the model.
64
- - Example: Training a Random Forest on customer purchase data.
65
  """
66
  },
67
  {
68
- "title": "7️⃣ **Evaluation**",
69
  "description": """
70
- **Goal**: Assess the model's performance using metrics.
71
- - Common Metrics:
72
- - Classification: Accuracy, Precision, Recall, F1-Score.
73
- - Regression: Mean Squared Error (MSE), R² Score.
74
- - Example: Evaluating a churn prediction model using accuracy on the test set.
75
  """
76
  },
77
  {
78
- "title": "8️⃣ **Deployment**",
79
  "description": """
80
- **Goal**: Integrate the trained model into a production environment.
81
- - Steps:
82
- - Create an API for model predictions.
83
- - Monitor performance on real-world data.
84
- - Example: Deploying a sentiment analysis model as a REST API.
85
  """
86
  },
87
  {
88
- "title": "9️⃣ **Monitoring & Maintenance**",
89
  "description": """
90
- **Goal**: Ensure the model continues to perform well over time.
91
- - Monitor for:
92
- - Data drift: Changes in data distribution.
93
- - Model decay: Performance deterioration.
94
- - Example: Regularly retraining a sales forecasting model with new data.
95
  """
96
  },
97
  ]
 
9
  {
10
  "title": "1️⃣ **Problem Statement**",
11
  "description": """
12
+ **Info**:
13
+ Understand the challenge at hand, establish clear objectives, and set criteria for success.
14
  """
15
  },
16
  {
17
  "title": "2️⃣ **Data Collection**",
18
  "description": """
19
+ **Info**: Gather relevant data to train the model, utilizing sources such as surveys, web scraping, and APIs.
20
+
21
+ """
22
+ },
23
+ {
24
+ "title": "3️⃣**Simple EDA**",
25
+ "description": """
26
+ **Info**: Perform a preliminary analysis to examine the dataset’s key features.
27
  """
28
  },
29
  {
30
+ "title": "4️⃣ **Data Preprocessing**",
31
  "description": """
32
+ **Info**: Clean the data to make sure it is in an appropriate format for further analysis.
 
 
 
 
 
 
33
  """
34
  },
35
  {
36
+ "title": "5️⃣ **EDA**",
37
  "description": """
38
+ **Info**:Conduct deeper analysis to extract valuable insights and uncover patterns within the data.
 
 
 
 
39
  """
40
  },
41
  {
42
+ "title": "6️⃣ **Feature Engineering**",
43
  "description": """
44
+ **Info**: Develop new features or refine existing ones to enhance the model’s performance.
 
 
 
 
45
  """
46
  },
47
  {
48
+ "title": "7️⃣ **Training**",
49
  "description": """
50
+ **Info**:Train machine learning models using the preprocessed data.
 
 
 
 
51
  """
52
  },
53
  {
54
+ "title": "8️⃣ **Testing**",
55
  "description": """
56
+ **Info**:Assess the models performance using a separate test dataset to determine its effectiveness.
 
 
 
 
57
  """
58
  },
59
  {
60
+ "title": "9️⃣ **Deploying**",
61
  "description": """
62
+ **Info**:Deploy the trained model into a production environment for real-world use.
 
 
 
 
63
  """
64
  },
65
  {
66
+ "title": "🔟 **Monitoring**",
67
  "description": """
68
+ **Info**:Continuously track the model’s performance in production to ensure it remains effective over time
 
 
 
 
69
  """
70
  },
71
  ]