SuriRaja commited on
Commit
46d6b04
·
verified ·
1 Parent(s): ace77f4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -1
app.py CHANGED
@@ -12,9 +12,29 @@ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refin
12
 
13
  def extract_features(image, landmarks):
14
  mean_intensity = np.mean(image)
 
 
15
  bbox_width = max(pt.x for pt in landmarks) - min(pt.x for pt in landmarks)
16
  bbox_height = max(pt.y for pt in landmarks) - min(pt.y for pt in landmarks)
17
- return [mean_intensity, bbox_width, bbox_height]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  def train_model(output_range):
20
  X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2)] for _ in range(100)]
 
12
 
13
  def extract_features(image, landmarks):
14
  mean_intensity = np.mean(image)
15
+ h, w, _ = image.shape
16
+
17
  bbox_width = max(pt.x for pt in landmarks) - min(pt.x for pt in landmarks)
18
  bbox_height = max(pt.y for pt in landmarks) - min(pt.y for pt in landmarks)
19
+
20
+ # Compute facial region ratios (eye distance, nose length, jaw width, etc.)
21
+ def dist(p1, p2):
22
+ return ((p1.x - p2.x)**2 + (p1.y - p2.y)**2) ** 0.5
23
+
24
+ eye_dist = dist(landmarks[33], landmarks[263]) # between left and right eye
25
+ nose_len = dist(landmarks[1], landmarks[2]) + dist(landmarks[2], landmarks[98]) # bridge + tip
26
+ jaw_width = dist(landmarks[234], landmarks[454])
27
+
28
+ # Skin tone analysis from cheeks
29
+ left_cheek = landmarks[234]
30
+ right_cheek = landmarks[454]
31
+ cx1, cy1 = int(left_cheek.x * w), int(left_cheek.y * h)
32
+ cx2, cy2 = int(right_cheek.x * w), int(right_cheek.y * h)
33
+ skin_tone1 = np.mean(image[cy1-5:cy1+5, cx1-5:cx1+5]) if 5 <= cy1 < h-5 and 5 <= cx1 < w-5 else 0
34
+ skin_tone2 = np.mean(image[cy2-5:cy2+5, cx2-5:cx2+5]) if 5 <= cy2 < h-5 and 5 <= cx2 < w-5 else 0
35
+ avg_skin_tone = (skin_tone1 + skin_tone2) / 2
36
+
37
+ return [mean_intensity, bbox_width, bbox_height, eye_dist, nose_len, jaw_width, avg_skin_tone]
38
 
39
  def train_model(output_range):
40
  X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2)] for _ in range(100)]