Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,14 @@
|
|
1 |
# Face Detection-Based AI Automation of Lab Tests
|
2 |
-
# Gradio App with
|
3 |
|
4 |
import gradio as gr
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
import mediapipe as mp
|
8 |
|
9 |
-
# Setup Mediapipe Face Mesh
|
10 |
mp_face_mesh = mp.solutions.face_mesh
|
11 |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)
|
12 |
|
13 |
-
# Function to calculate mean green intensity (simplified rPPG)
|
14 |
def estimate_heart_rate(frame, landmarks):
|
15 |
h, w, _ = frame.shape
|
16 |
forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]]
|
@@ -19,19 +17,56 @@ def estimate_heart_rate(frame, landmarks):
|
|
19 |
cv2.fillConvexPoly(mask, pts, 255)
|
20 |
green_channel = cv2.split(frame)[1]
|
21 |
mean_intensity = cv2.mean(green_channel, mask=mask)[0]
|
22 |
-
heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi))
|
23 |
return heart_rate
|
24 |
|
25 |
-
# Estimate SpO2 and Respiratory Rate (simulated based on heart rate)
|
26 |
def estimate_spo2_rr(heart_rate):
|
27 |
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2)))
|
28 |
rr = int(12 + abs(heart_rate % 5 - 2))
|
29 |
return spo2, rr
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def analyze_face(image):
|
33 |
if image is None:
|
34 |
-
return {
|
35 |
|
36 |
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
37 |
result = face_mesh.process(frame_rgb)
|
@@ -41,25 +76,90 @@ def analyze_face(image):
|
|
41 |
heart_rate = estimate_heart_rate(frame_rgb, landmarks)
|
42 |
spo2, rr = estimate_spo2_rr(heart_rate)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
}
|
52 |
-
return
|
53 |
else:
|
54 |
-
return {"
|
55 |
-
|
56 |
-
#
|
57 |
-
demo = gr.
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
demo.launch()
|
|
|
1 |
# Face Detection-Based AI Automation of Lab Tests
|
2 |
+
# Gradio App with Mobile-Responsive UI and Risk-Level Coloring
|
3 |
|
4 |
import gradio as gr
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
import mediapipe as mp
|
8 |
|
|
|
9 |
mp_face_mesh = mp.solutions.face_mesh
|
10 |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)
|
11 |
|
|
|
12 |
def estimate_heart_rate(frame, landmarks):
|
13 |
h, w, _ = frame.shape
|
14 |
forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]]
|
|
|
17 |
cv2.fillConvexPoly(mask, pts, 255)
|
18 |
green_channel = cv2.split(frame)[1]
|
19 |
mean_intensity = cv2.mean(green_channel, mask=mask)[0]
|
20 |
+
heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi))
|
21 |
return heart_rate
|
22 |
|
|
|
23 |
def estimate_spo2_rr(heart_rate):
|
24 |
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2)))
|
25 |
rr = int(12 + abs(heart_rate % 5 - 2))
|
26 |
return spo2, rr
|
27 |
|
28 |
+
def get_risk_color(value, normal_range):
|
29 |
+
low, high = normal_range
|
30 |
+
if value < low:
|
31 |
+
return "🔻 LOW"
|
32 |
+
elif value > high:
|
33 |
+
return "🔺 HIGH"
|
34 |
+
else:
|
35 |
+
return "✅ Normal"
|
36 |
+
|
37 |
+
def generate_flags_extended(params):
|
38 |
+
hb, wbc, platelets, iron, ferritin, tibc, bilirubin, creatinine, tsh, cortisol, fbs, hba1c = params
|
39 |
+
flags = []
|
40 |
+
if hb < 13.5:
|
41 |
+
flags.append("Hemoglobin Low - Possible Anemia")
|
42 |
+
if wbc < 4.0 or wbc > 11.0:
|
43 |
+
flags.append("Abnormal WBC Count - Possible Infection")
|
44 |
+
if platelets < 150:
|
45 |
+
flags.append("Platelet Drop Risk - Bruising Possible")
|
46 |
+
if iron < 60:
|
47 |
+
flags.append("Iron Deficiency Detected")
|
48 |
+
if ferritin < 30:
|
49 |
+
flags.append("Low Ferritin - Iron Store Low")
|
50 |
+
if tibc > 400:
|
51 |
+
flags.append("High TIBC - Iron Absorption Issue")
|
52 |
+
if bilirubin > 1.2:
|
53 |
+
flags.append("Jaundice Detected - Elevated Bilirubin")
|
54 |
+
if creatinine > 1.2:
|
55 |
+
flags.append("Kidney Function Concern - High Creatinine")
|
56 |
+
if tsh < 0.4 or tsh > 4.0:
|
57 |
+
flags.append("Thyroid Imbalance - Check TSH")
|
58 |
+
if cortisol < 5 or cortisol > 25:
|
59 |
+
flags.append("Stress Hormone Abnormality - Cortisol")
|
60 |
+
if fbs > 110:
|
61 |
+
flags.append("High Fasting Blood Sugar")
|
62 |
+
if hba1c > 5.7:
|
63 |
+
flags.append("Elevated HbA1c - Diabetes Risk")
|
64 |
+
flags.append("Mood / Stress analysis requires separate behavioral model")
|
65 |
+
return flags
|
66 |
+
|
67 |
def analyze_face(image):
|
68 |
if image is None:
|
69 |
+
return {}, None
|
70 |
|
71 |
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
72 |
result = face_mesh.process(frame_rgb)
|
|
|
76 |
heart_rate = estimate_heart_rate(frame_rgb, landmarks)
|
77 |
spo2, rr = estimate_spo2_rr(heart_rate)
|
78 |
|
79 |
+
hb, wbc, platelets = 12.3, 6.4, 210
|
80 |
+
iron, ferritin, tibc = 55, 45, 340
|
81 |
+
bilirubin, creatinine = 1.5, 1.3
|
82 |
+
tsh, cortisol = 2.5, 18
|
83 |
+
fbs, hba1c = 120, 6.2
|
84 |
+
|
85 |
+
flags = generate_flags_extended([hb, wbc, platelets, iron, ferritin, tibc, bilirubin, creatinine, tsh, cortisol, fbs, hba1c])
|
86 |
+
|
87 |
+
sections = {
|
88 |
+
"🩸 Hematology": [
|
89 |
+
f"Hemoglobin (Hb): {hb} g/dL - {get_risk_color(hb, (13.5, 17.5))}",
|
90 |
+
f"WBC Count: {wbc} x10^3/uL - {get_risk_color(wbc, (4.0, 11.0))}",
|
91 |
+
f"Platelet Count: {platelets} x10^3/uL - {get_risk_color(platelets, (150, 450))}"
|
92 |
+
],
|
93 |
+
"🧬 Iron & Liver Panel": [
|
94 |
+
f"Iron: {iron} µg/dL - {get_risk_color(iron, (60, 170))}",
|
95 |
+
f"Ferritin: {ferritin} ng/mL - {get_risk_color(ferritin, (30, 300))}",
|
96 |
+
f"TIBC: {tibc} µg/dL - {get_risk_color(tibc, (250, 400))}",
|
97 |
+
f"Bilirubin: {bilirubin} mg/dL - {get_risk_color(bilirubin, (0.3, 1.2))}"
|
98 |
+
],
|
99 |
+
"🧪 Kidney, Thyroid & Stress": [
|
100 |
+
f"Creatinine: {creatinine} mg/dL - {get_risk_color(creatinine, (0.6, 1.2))}",
|
101 |
+
f"TSH: {tsh} µIU/mL - {get_risk_color(tsh, (0.4, 4.0))}",
|
102 |
+
f"Cortisol: {cortisol} µg/dL - {get_risk_color(cortisol, (5, 25))}"
|
103 |
+
],
|
104 |
+
"🧁 Metabolic Panel": [
|
105 |
+
f"Fasting Blood Sugar: {fbs} mg/dL - {get_risk_color(fbs, (70, 110))}",
|
106 |
+
f"HbA1c: {hba1c}% - {get_risk_color(hba1c, (4.0, 5.7))}"
|
107 |
+
],
|
108 |
+
"❤️ Vital Signs": [
|
109 |
+
f"SpO2: {spo2}% - {get_risk_color(spo2, (95, 100))}",
|
110 |
+
f"Heart Rate: {heart_rate} bpm - {get_risk_color(heart_rate, (60, 100))}",
|
111 |
+
f"Respiratory Rate: {rr} breaths/min - {get_risk_color(rr, (12, 20))}",
|
112 |
+
"Blood Pressure: Low (simulated)"
|
113 |
+
],
|
114 |
+
"⚠️ Risk Flags": flags
|
115 |
}
|
116 |
+
return sections, frame_rgb
|
117 |
else:
|
118 |
+
return {"⚠️ Error": ["Face not detected"]}, None
|
119 |
+
|
120 |
+
# Mobile-optimized UI with styled labels
|
121 |
+
demo = gr.Blocks(css="""
|
122 |
+
@media only screen and (max-width: 768px) {
|
123 |
+
.gr-block.gr-column { width: 100% !important; }
|
124 |
+
}
|
125 |
+
""")
|
126 |
+
with demo:
|
127 |
+
gr.Markdown("""
|
128 |
+
# 🧠 Face-Based AI Lab Test Inference
|
129 |
+
Upload a clear face image to simulate categorized lab reports with visual grouping.
|
130 |
+
""")
|
131 |
+
|
132 |
+
with gr.Row():
|
133 |
+
with gr.Column(scale=1):
|
134 |
+
image_input = gr.Image(type="numpy", label="📸 Upload a Face Image")
|
135 |
+
submit_btn = gr.Button("🔍 Analyze Now")
|
136 |
+
with gr.Column(scale=2):
|
137 |
+
accordion_output = gr.Accordion("📂 Diagnostic Summary", open=True)
|
138 |
+
with accordion_output:
|
139 |
+
result_html = gr.HighlightedText(label="📊 Grouped Report", combine_adjacent=True)
|
140 |
+
result_image = gr.Image(label="🧍 Annotated Face Scan")
|
141 |
+
|
142 |
+
def format_report(sections):
|
143 |
+
lines = []
|
144 |
+
for title, values in sections.items():
|
145 |
+
lines.append((f"{title}",))
|
146 |
+
for item in values:
|
147 |
+
lines.append((f" - {item}",))
|
148 |
+
return lines
|
149 |
+
|
150 |
+
submit_btn.click(
|
151 |
+
fn=analyze_face,
|
152 |
+
inputs=image_input,
|
153 |
+
outputs=[result_html, result_image],
|
154 |
+
preprocess=False,
|
155 |
+
postprocess=False,
|
156 |
+
_js="(data) => [data]"
|
157 |
+
).then(
|
158 |
+
fn=format_report,
|
159 |
+
inputs=None,
|
160 |
+
outputs=result_html
|
161 |
+
)
|
162 |
+
|
163 |
+
gr.Markdown("---\n✅ Optimized for Mobile · Risk Indicators: 🔻 Low, 🔺 High, ✅ Normal")
|
164 |
|
165 |
demo.launch()
|